求解答高等数学定积分

 我来答
百度网友8362f66
2016-07-07 · TA获得超过8.3万个赞
知道大有可为答主
回答量:8690
采纳率:83%
帮助的人:3332万
展开全部
  解:分享一种解法。设I=∫(0,π/2)dx/[1+(tanx)^α],
  再设x=π/2-t,则I=∫(0,π/2)dt/[1+(cott)^α]=∫(0,π/2)(tanx)^αdx/[1+(tanx)^α],
  ∴2I=I+I=∫(0,π/2)dx/[1+(tanx)^α]+∫(0,π/2)(tanx)^αdx/[1+(tanx)^α]=∫(0,π/2)dx=π/2,
  ∴原式=I=π/4。
  供参考。
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式