如何用数学归纳法证明不等式??
展开全部
1、(归纳奠基)证明当n取第一个值n0(n0∈N*)时命题成立;
2、(归纳递推)假设n=k(k≥n0,k∈N*)时命题成立,证明当n=k+1时命题也成立。
这种方法的原理在于:首先证明在某个起点值时命题成立,然后证明从一个值到下一个值的过程有效。当这两点都已经证明,那么任意值都可以通过反复使用这个方法推导出来。
扩展资料
没有运用归纳假设的证明不是数学归纳法.在n=k到n=k+1的证明过程中寻找由n=k到n=k+1的变化规律是难点,突破的关键是分析清楚p(k)与p(k+1)的差异与联系,
利用拆、添、并、放、缩等手段,从p(k+1)中分离出p(k).证明不等式的方法多种多样,故在用数学归纳法证明不等式的过程中,比较法、放缩法、分析法等要灵活运用。
参考资料来源:百度百科-数学归纳法
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询