已知(x,y)的联合概率分布 判断X,Y 是否相关 是否独立
(1)X的边缘分布律为:
X -2 -1 1 2
P 1/4 1/4 1/4 1/4
Y的边缘分布律为:
Y 1 4
P 1/2 1/2
易求得,E(X)=0,E(Y)=5/2,
E(XY)=-2·4·1/4+(-1)·1·1/4+1·1·1/4+2·1·1/4=0
∵Cov(X,Y)=E(XY)-E(X)·E(Y)=0
∴X与Y不相关。
(2)P(X=-2,Y=1)=0≠P(X=-2)·P(Y=1)
∴X与Y不相互独立。
根据随机变量的不同,联合概率分布的表示形式也不同。对于离散型随机变量,联合概率分布可以以列表的形式表示,也可以以函数的形式表示;对于连续型随机变量,联合概率分布通过非负函数的积分表示。
扩展资料:
如果X是由全部实数或者由一部分区间组成,则称X为连续随机变量,连续随机变量的值是不可数及无穷尽的。随机变量分为离散型随机变量和连续型随机变量,当要求随机变量的概率分布的时候,要分别处理。
如果将二维随机变量(X,Y)看成是平面上随机点的坐标,那么分布函数F(x,y)在(x,y)处的函数值就是随机点(X,Y)落在以点(x,y)为顶点而位于该点左下方的无穷矩形域内的概率。
类似地,对连续随机变量而言,联合分布概率密度函数为fX,Y(x, y),其中fY|X(y|x)和fX|Y(x|y)分别代表X = x时Y的条件分布以及Y = y时X的条件分布;fX(x)和fY(y)分别代表X和Y的边缘分布。
参考资料来源:百度百科——联合概率分布
(1)X的边缘分布律为:
X -2 -1 1 2
P 1/4 1/4 1/4 1/4
Y的边缘分布律为:
Y 1 4
P 1/2 1/2
易求得,E(X)=0,E(Y)=5/2,
E(XY)=-2·4·1/4+(-1)·1·1/4+1·1·1/4+2·1·1/4=0
∵Cov(X,Y)=E(XY)-E(X)·E(Y)=0
∴X与Y不相关。
(2)P(X=-2,Y=1)=0≠P(X=-2)·P(Y=1)
∴X与Y不相互独立。
随机变量X和Y的联合分布函数是设(X,Y)是二维随机变量,对于任意实数x,y,二元函数:F(x,y) = P{(X<=x) 交 (Y<=y)} => P(X<=x, Y<=y)称为二维随机变量(X,Y)的分布函数。
扩展资料:
对离散随机变量 X, Y 而言,联合分布概率密度函数如下:
。因为是概率分布函数,所以必须满足以下条件:
类似地,对连续随机变量而言,联合分布概率密度函数为fX,Y(x, y),其中fY|X(y|x)和fX|Y(x|y)分别代
表X = x时Y的条件分布以及Y = y时X的条件分布;fX(x)和fY(y)分别代表X和Y的边缘分布。
同样地,因为是概率分布函数,所以必须有:∫x∫y fX,Y(x,y) dy dx=1
参考资料来源:百度百科-联合分布
X -2 -1 1 2
P 1/4 1/4 1/4 1/4
Y的边缘分布律为
Y 1 4
P 1/2 1/2
易求得,E(X)=0,E(Y)=5/2,
E(XY)=-2·4·1/4+(-1)·1·1/4+1·1·1/4+2·1·1/4=0
∵Cov(X,Y)=E(XY)-E(X)·E(Y)=0
∴X与Y不相关。
(2)
P(X=-2,Y=1)=0≠P(X=-2)·P(Y=1)
∴X与Y不相互独立。
广告 您可能关注的内容 |