∫arcsinxdx=?求过程!!!

 我来答
一个人郭芮
高粉答主

推荐于2018-09-19 · GR专注于各种数学解题
一个人郭芮
采纳数:37941 获赞数:84696

向TA提问 私信TA
展开全部
使用分部积分法即可,
∫ arcsinx dx
= x arcsinx - ∫ x darcsinx
= xarcsinx - ∫ x / √(1 - x²) dx
= xarcsinx + 1/2 ∫ 1/√(1-x²) d(1-x²)
= xarcsinx + √(1-x²) +C,C为常数
帐号已注销
2019-04-03 · TA获得超过82.9万个赞
知道大有可为答主
回答量:2602
采纳率:100%
帮助的人:172万
展开全部

∫arcsinxdx=xarcsinx + √(1-x²) +C,C为常数。

解答过程如下:

使用分部积分法即可。

∫ arcsinx dx

= x arcsinx - ∫ x darcsinx

= xarcsinx - ∫ x / √(1 - x²) dx

= xarcsinx + 1/2 ∫ 1/√(1-x²) d(1-x²)

= xarcsinx + √(1-x²) +C,C为常数。

扩展资料:

分部积分:

(uv)'=u'v+uv'

得:u'v=(uv)'-uv'

两边积分得:∫ u'v dx=∫ (uv)' dx - ∫ uv' dx

即:∫ u'v dx = uv - ∫ uv' d,这就是分部积分公式

也可简写为:∫ v du = uv - ∫ u dv

常用积分公式:

1)∫0dx=c 

2)∫x^udx=(x^(u+1))/(u+1)+c

3)∫1/xdx=ln|x|+c

4)∫a^xdx=(a^x)/lna+c

5)∫e^xdx=e^x+c

6)∫sinxdx=-cosx+c

7)∫cosxdx=sinx+c

8)∫1/(cosx)^2dx=tanx+c

9)∫1/(sinx)^2dx=-cotx+c

10)∫1/√(1-x^2) dx=arcsinx+c

已赞过 已踩过<
你对这个回答的评价是?
评论 收起
大伦大伦大伦
2019-12-23 · TA获得超过1027个赞
知道答主
回答量:3721
采纳率:26%
帮助的人:118万
展开全部
利用分部积分法
即 ∫udv=uv-∫vdu
∫arcsinx dx=x·arcsinx-∫xd(arcsinx)
=x·arcsinx-∫x/(1-x^2)^(1/2)dx
=x·arcsinx+(1/2)∫1/(1-x^2)^(1/2)d((1-x^2))
=x·arcsinx+(1-x^2)^(1/2)+C
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
逸球程名

2019-12-23 · TA获得超过3640个赞
知道大有可为答主
回答量:1.8万
采纳率:52%
帮助的人:537万
展开全部
这样的问题对于我们文科生来说也是无语了。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(2)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式