∫arcsinxdx=?求过程!!!
4个回答
展开全部
∫arcsinxdx=xarcsinx + √(1-x²) +C,C为常数。
解答过程如下:
使用分部积分法即可。
∫ arcsinx dx
= x arcsinx - ∫ x darcsinx
= xarcsinx - ∫ x / √(1 - x²) dx
= xarcsinx + 1/2 ∫ 1/√(1-x²) d(1-x²)
= xarcsinx + √(1-x²) +C,C为常数。
扩展资料:
分部积分:
(uv)'=u'v+uv'
得:u'v=(uv)'-uv'
两边积分得:∫ u'v dx=∫ (uv)' dx - ∫ uv' dx
即:∫ u'v dx = uv - ∫ uv' d,这就是分部积分公式
也可简写为:∫ v du = uv - ∫ u dv
常用积分公式:
1)∫0dx=c
2)∫x^udx=(x^(u+1))/(u+1)+c
3)∫1/xdx=ln|x|+c
4)∫a^xdx=(a^x)/lna+c
5)∫e^xdx=e^x+c
6)∫sinxdx=-cosx+c
7)∫cosxdx=sinx+c
8)∫1/(cosx)^2dx=tanx+c
9)∫1/(sinx)^2dx=-cotx+c
10)∫1/√(1-x^2) dx=arcsinx+c
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
利用分部积分法
即 ∫udv=uv-∫vdu
∫arcsinx dx=x·arcsinx-∫xd(arcsinx)
=x·arcsinx-∫x/(1-x^2)^(1/2)dx
=x·arcsinx+(1/2)∫1/(1-x^2)^(1/2)d((1-x^2))
=x·arcsinx+(1-x^2)^(1/2)+C
即 ∫udv=uv-∫vdu
∫arcsinx dx=x·arcsinx-∫xd(arcsinx)
=x·arcsinx-∫x/(1-x^2)^(1/2)dx
=x·arcsinx+(1/2)∫1/(1-x^2)^(1/2)d((1-x^2))
=x·arcsinx+(1-x^2)^(1/2)+C
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
这样的问题对于我们文科生来说也是无语了。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
广告 您可能关注的内容 |