求16题答案
1个回答
展开全部
(1)
由正弦定理得:
sinB(1-2cosA)=2sinAcosB
sinB-2sinBcosA=2sinAcosB
sinB=2(sinAcosB+sinBcosA)
sinB=2sin(A+B)
sinB=2sinC
由正弦定理得:b=2c
(2)
sinA/cosA=tanA=2√2
A为三角形内角,sinA恒>0,因此cosA>0
sinA=2√2/√[1²+(2√2)²)]=2√2/3
cosA=1/[√[1²+(2√2)²)]=1/3
由余弦定理得:cosA=(b²+c²-a²)/(2bc)
cosA=1/3,a=1,b=2c代入,得:
[(2c)²+c²-a²]/(2·2c·c)=1/3
整理,得:11c²=3
c²=3/11
S△ABC=½bcsinA
=½·(2c)·c·sinA
=c²·sinA
=(3/11)·(2√2/3)
=2√2/11
更多追问追答
追问
大神呐,还能问你别的题不,拜托拜托了
行不
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询