好吧。方法就是添项构造,逐步降次。
∫[1:e](xlnx)²dx
=⅓∫[1:e](3x²ln²x+2x²lnx-2x²lnx)dx
=⅓∫[1:e](3x²ln²x+2x²lnx)dx-⅔∫[1:e]x²lnxdx
=⅓x³ln²x|[1:e] -(2/9)∫[1:e](3x²lnx+x²-x²)dx
=⅓(e³ln²e -1³·ln²1) -(2/9)∫[1:e](3x²lnx+x²)dx +(2/9)∫[1:e]x²dx
=⅓e³ -(2/9)x³lnx|[1:e] +(2/27)x³|[1:e]
=⅓e³- (2/9)(e³lne -1³·ln1)+ (2/27)(e³-1³)
=⅓e³- (2/9)e³+ (2/27)(e³-1)
=(9e³-6e³+2e³-2)/27
=(5e³-2)/27