对数大小的比较方法
对数大小的比较方法如下:
单调性方法;对于底数不同,但是真数相同的,可以很快的化同底。
单调性方法,如果是底数一样可以用此方法,底数大于一,函数单增,指数越大,值越大,底数大于零小于一,函数单减,指数越小,值越大。对于对数函数,也是如此。对于指数函数,如果指数相同,底数不同,实质上应用的是幂函数的单调性。
对于对数函数,如果真数相同,底数不同,如果底数都大于一,那么,告诉你一个规律,对数函数的图像,在x轴以上底数小的在上面,底数大的在下面,在X轴以下相反。这样,画出图像,竖着画一条平行于Y轴的线,就一目了然了。
对于底数不同,但是真数相同的,可以很快的化同底。举个例子,比如log2.5和log7.5,log2.5=1/log5.2,log7.5=1/log5.7,因为log5.7>log 5.2,所以1/log5.7<1/log5.2,即log7.5<log2.5。
对数函数:
对数函数(Logarithmic Function)是以幂(真数)为自变量,指数为因变量,底数为常量的函数。对数函数是6类基本初等函数之一。其中对数的定义:如果ax=N(a>0,且a≠1),那么数x叫做以a为底N的对数,记作x=logaN,读作以a为底N的对数,其中a叫做对数的底数,N叫做真数。
一般地,函数y=logaX(a>0,且a≠1)叫做对数函数,也就是说以幂为自变量,指数为因变量,底数为常量的函数,叫对数函数。其中x是自变量,函数的定义域是(0,+∞),即x>0。它实际上就是指数函数的反函数,可表示为x=ay。因此指数函数里对于a的规定,同样适用于对数函数。
2024-12-27 广告