设z=cosθ+isinθ(0<π<2π),证明(1+z)/(1-z)=icot(θ/2) 10
展开全部
解法一:
设复数z=cosθ+isinθ(0≤θ<2π)对应点Z, ∵ |z|=cos²θ+sin²θ=1,
∴ 点Z的轨迹是单位圆,再设1+i对应点P,则|1+i-z|表示点P,Z间的距离,连PO交⊙O于远点A,则|1+i-z|的最大值=|PA|=1+√2,此时,θ=∠XOA=5π/4
解法二:|1+i-z|²=(1-cosθ)²+(1-sinθ)²=3-2√2sin(θ+π/4),
∵ 0≤θ<2π, π/4≤θ+π/4<9π/4, -1≤sin(θ+π/4)≤√2/2,
∴ 1≤3-2√2sin(θ+π/4)≤3+2√2=(1+√2)²,
∴ |1+i-z|≤1+√2,等号成立时θ+π/4=3π/2, ∴ θ=5π/4
设复数z=cosθ+isinθ(0≤θ<2π)对应点Z, ∵ |z|=cos²θ+sin²θ=1,
∴ 点Z的轨迹是单位圆,再设1+i对应点P,则|1+i-z|表示点P,Z间的距离,连PO交⊙O于远点A,则|1+i-z|的最大值=|PA|=1+√2,此时,θ=∠XOA=5π/4
解法二:|1+i-z|²=(1-cosθ)²+(1-sinθ)²=3-2√2sin(θ+π/4),
∵ 0≤θ<2π, π/4≤θ+π/4<9π/4, -1≤sin(θ+π/4)≤√2/2,
∴ 1≤3-2√2sin(θ+π/4)≤3+2√2=(1+√2)²,
∴ |1+i-z|≤1+√2,等号成立时θ+π/4=3π/2, ∴ θ=5π/4
追问
这是证明题啊
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询