什么是正态分布?
正态分布就是大部分属于中间值,只有一小部分属于过大和过小的值,它们分布在范围的两端。
正态分布(Normal distribution),也称“常态分布”,又名高斯分布(Gaussian distribution),最早由A.棣莫弗在求二项分布的渐近公式中得到,C.F.高斯在研究测量误差时从另一个角度导出了它。
正态曲线呈钟型,两头低,中间高,左右对称因其曲线呈钟形,因此人们又经常称之为钟形曲线。
正态分布的表示:若随机变量X服从一个数学期望为μ、方差为σ^2的正态分布,记为N(μ,σ^2)。
扩展资料
一般的正态总体其图像不一定关于y轴对称,对于任一正态总体,其取值小于x的概率。只要会用它求正态总体在某个特定区间的概率即可。为了便于描述和应用,常将正态变量作数据转换。将一般正态分布转化成标准正态分布。
正态分布的图形特征
1、集中性:正态曲线的高峰位于正中央,即均数所在的位置。
2、对称性:正态曲线以均数为中心,左右对称,曲线两端永远不与横轴相交。
3、均匀变动性:正态曲线由均数所在处开始,分别向左右两侧逐渐均匀下降。
4、曲线与横轴间的面积总等于1,相当于概率密度函数的函数从正无穷到负无穷积分的概率为1。即频率的总和为100%。
5、关于μ对称,并在μ处取最大值,在正(负)无穷远处取值为0,在μ±σ处有拐点。
参考资料来源:百度百科-正态分布