如何评价深度学习框架Keras

 我来答
起点和终点岁月
2016-12-07
知道答主
回答量:0
采纳率:0%
帮助的人:0
展开全部
优点:
1、Keras基于python,backend可以是TensorFlow或Theano,人气比较旺。
2、和其他high-level API一样,都是直接提供上层的框架,很快可以搞出个神经网络原型。

缺点:
1、不支持seq2seq,搞不了高级点的nlp(现在好像支持了)。不过我发现tflearn,lasagne 都不支持seq2seq。目前只知道torch7支持。
2、在TensorFlow backend时,跑同样的模型比纯TensorFlow要慢一倍。。。
3、没有增强学习工具箱,自己修改实现很麻烦。
4、封装得太高级,训练细节不能修改、penalty细节很难修改、不合适算法研究。
5、用TensorFLow backend时速度比纯TensorFLow 下要慢很多。
6、最近更新很慢。
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
?>

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式