当X趋近于0时,X的X次方的极限怎么求
只能是x→0+,极限是1
解答过程:
lim(x→0+)(x^x)
=lim(x→0+) e^ln(x^x)
=lim(x→0+) e^(xlnx)
=e^lim(x→0+) (xlnx)
=e^0
=1
扩展资料:
空间的研究源自于欧式几何.三角学则结合了空间极数,且包含有非常著名的勾股定理、三角函数等。现今对空间的研究更推广到了更高维的几何、非欧几何及拓扑学.数和空间在解析几何、微分几何和代数几何中都有着很重要的角色.在微分几何中有着纤维丛及流形上的计算等概念.在代数几何中有着如多项式方程的解集等几何对象的描述,结合了数和空间的概念;亦有着拓扑群的研究,结合了结构与空间.李群被用来研究空间、结构及变化.
参考资料:百度百科.数学
只能是x→0+,极限是1
解答过程:
lim(x→0+)(x^x)
=lim(x→0+) e^ln(x^x)
=lim(x→0+) e^(xlnx)
=e^lim(x→0+) (xlnx)
=e^0
=1
扩展资料
“极限”是数学中的分支——微积分的基础概念,广义的“极限”是指“无限靠近而永远不能到达”的意思。数学中的“极限”指:某一个函数中的某一个变量,此变量在变大(或者变小)的永远变化的过程中,逐渐向某一个确定的数值A不断地逼近而“永远不能够重合到A”(“永远不能够等于A,但是取等于A‘已经足够取得高精度计算结果)的过程中,此变量的变化,被人为规定为“永远靠近而不停止”、其有一个“不断地极为靠近A点的趋势”。
极限是一种“变化状态”的描述。此变量永远趋近的值A叫做“极限值”(当然也可以用其他符号表示)。
lim(x→0+)(x^x)
=lim(x→0+) e^ln(x^x)
=lim(x→0+) e^(xlnx)
=e^lim(x→0+) (xlnx)
=e^0
=1
=lim(x→0+) e^ln(x^x)
=lim(x→0+) e^(xlnx)
=e^lim(x→0+) (xlnx)
由洛必达法则
对lnx/(1/x)上下求导得到
(1/x)/(-1/x^2)=-x,当x->0+时,-x趋于0
原式=e^0=1
广告 您可能关注的内容 |