证明进程
20世纪的数学家们研究哥德巴赫猜想所采用的主要方法,是筛法、圆法、密率法和三角和法等等高深的数学方法。解决这个猜想的思路,就像“缩小包围圈”一样,逐步逼近最后的结果。
1920年,挪威数学家布朗证明了定理“9+9”,由此划定了进攻“哥德巴赫猜想”的“大包围圈”。所谓“9+9”,翻译成数学语言就是:“任何一个足够大的偶数,都可以表示成其它两个数之和,而这两个数中的每个数,都是9个奇质数之积。”
从这个“9+9”开始,全世界的数学家集中力量“缩小包围圈”,当然最后的目标就是“1+1”了。
1924年,德国数学家雷德马赫证明了定理“7+7”。很快,“6+6”、“5+5”、“4+4” 和 “3+3”逐一被攻陷。1957年,中国数学家王元证明了“2+3”。1962年,中国数学家潘承洞证明了“1+5”,同年又和王元合作证明了“1+4”。1965年,苏联数学家证明了“1+3”。
1966年,中国著名数学家陈景润攻克了“1+2”,也就是:“任何一个足够大的偶数,都可以表示成两个数之和,而这两个数中的一个就是奇质数,另一个则是两个奇质数的积。”这个定理被世界数学界称为“陈氏定理”。
由于陈景润的贡献,人类距离哥德巴赫猜想的最后结果“1+1”仅有一步之遥了。但为了实现这最后的一步,也许还要历经一个漫长的探索过程。有许多数学家认为,要想证明“1+1”,必须通过创造新的数学方法,以往的路很可能都是走不通的。
扩展资料
猜想提出
1742年6月7日,哥德巴赫写信给欧拉,提出了著名的哥德巴赫猜想:随便取某一个奇数,比如77,可以把它写成三个素数之和,即77=53+17+7;
再任取一个奇数,比如461,可以表示成461=449+7+5,也是三个素数之和,461还可以写成257+199+5,仍然是三个素数之和。例子多了,即发现“任何大于5的奇数都是三个素数之和。”
1742年6月30日欧拉给哥德巴赫回信。这个命题看来是正确的,但是他也给不出严格的证明。同时欧拉又提出了另一个命题:任何一个大于2的偶数都是两个素数之和。但是这个命题他也没能给予证明。
参考资料来源:百度百科-哥德巴赫猜想
参考资料来源:百度百科-世界三大数学猜想
哥德巴赫猜想:大于6的偶数可以表示为两个奇素数之和。
1、偶数的拆分与合数删除
因为:大于或等于6的偶数都能够被2整除,我们令大于6的偶数为M,那么,M/2只有两种结果,或者为奇数,或者为偶数。不管M/2为奇数,还是偶数。都有:①、M必然等于M/2+M/2,② 、M必然等于M/2+1,2,3,4,5,……(M/2-1)加上M/2-1,2,3,4,5,……(M/2-1)之和。或者说M=M/2±1,2,3,4,5,……(M/2-1)。
举例说明吧:偶数32,
32=16+16=17+15=18+14=19+13==20+12=21+11=22+10=23+9=24+8=25+7=26+6=27+5=28+4=29+3=30+2。
我们把这里的加数与被加数分成两个相互对应的数列为:
16,17,18,19,20,21,22,23,24,25,26,27,28,29,30
16,15,14,13,12,11,10,09,08,07,06,05,04,03,02
我们从这个加数数列与偶数数列,可以看出以下三点:
(1)、不论是加数数列,还是偶数数列,都是相差1的等差数列,相差数不是素数2、3、5的倍数,那么,素数2、3、5对这两个数列必然要进行删除后,剩余的才是适应偶数32的素数对。素数2的删除为:每两个数删除一个,并且只删除一个;素数3的删除为:素数2删除后的剩余数,每三个删除一个,并且只删除一个;……。虽然后面的删除数在这里看不出来,请看我写的《素数的综合计算方法》和《解除三大误区创建三个参数》,从大的方面和总体的方面,大素数的删除仍然遵循这一规律。
(2)、因为:偶数32能够被素数2整除,所以,素数2对加数数列的删除与对被加数数列的删除,是完全对应的。即素数2删除后,剩余所有适应偶数32的加数对为1/2,即删除了偶数对,剩余了奇数对。严格地说为(M-2)/4取整数;因为,偶数32不能够被素数3整除,所以,素数3必须对(素数2删除后的)加数数列删除1/3,素数3必须对(素数2删除后的)被加数数列删除1/3,它们的删除是完全不对应的,素数3合计删除奇数对的2/3,剩余奇数对的1/3;……。虽然后面的删除数在这里看不出来,仍然是:从大的方面和总体的方面,大素数的删除仍然遵循这一规律。
(3)、我们再看删除因子:从偶数32来说删除因子为√32以下的素数,应该为5及5以下的素数,从这里我们可以看出,如果加数为√32以下的素数,那么,被加数就只能为√16以下的素数,即小于素数3以下的素数为删除因子。当然,在这里是不很明显,对于大偶数来说是比较明显的。
(4)、另外一方面,在这里是看不出来。如果说,您进行实际操作就会知道:任意设两个素数删除因子为A、B。那么,素数删除因子A的删除间隔,必然不是素数删除因子B的倍数,反过来说,素数删除因子B的删除间隔,也必然不是素数删除因子A的倍数,如果素数删除因子A对加数数列进行删除,素数删除因子B对被加数数列进行删除,素数A删除B个删除数中,必然有一个删除奇数对与素数B的删除奇数对为同一个奇数对,反过来,素数B删除A个删除数中,必然有一个删除奇数对与素数A的删除奇数对为同一个奇数对。
说到这里,强调一点:“哥德巴赫猜想”是大于6的偶数可以表示为两个奇素数之和,也正是大于6的偶数可以被最小的素数2整除,素数2对组成偶数的加数与被加数的删除是完全对应的,删除了组成偶数1/2的偶数对,剩余了1/2的奇数对,才有266年的哥猜之说。如果,偶数不能够被素数2整除,素数2对组成偶数的加数数列与被加数数列的删除数,不相对应,就没有剩余奇数对,也就没有哥猜之说了!
再看偶数42,
42=21+21,22+20,23+19,24+18,25+17,26+16,27+15,28+14,29+13,30+12,31+11,32+10,33+9,34+8,35+7,36+6,37+5,38+4,39+3,40+2。
我们把这里的加数与被加数分成两个相互对应的数列为:
21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40
21,20,19,18,17,16,15,14,13,12,11,10,09,08,07,06,05,04,03,02。
从这里也可以看出:偶数42可以被素数2、3、7整除,素数删除因子2、3、7对组成42的加数数列与被加数数列的删除是完全对应的;偶数42不能够被素数删除因子5整除,素数删除因子对组成42的加数数列与被加数数列的删除,是完全不对应的,即对加数数列必须删除1/5,对被加数数列必须删除1/5,合计算删除2/5。这就是“哥德巴赫猜想”删除规律。
2、偶数与素数删除因子删除后的剩余奇数的关系
其实,大于6的偶数,可以分解为三种类型:6X,6X+2,6X+4。这里的X为:X≥1的自然数。
素数2、3删除后的剩余奇素数,也可以分为三种类型:3,6N+1,6N+5。这里的N为:N≥1的奇数。这里的1和5为小于6,且不能够被组成合数6的素数因子2和3整除,下同。
当偶数为6X时,即偶数能够被素数3整除,该种类型的偶数可以表示为:6X=(6N+1)+(6N+5)。
当偶数为6X+2时,即偶数不能够被素数3整除,该种类型的偶数可以表示为:6X+2=(6N+1)+(6N+1)或者(6N+5)+3。
当偶数为6X+4时,即偶数不能够被素数3整除,该种类型的偶数可以表示为:6X+4=(6N+5)+(6N+5)或者(6N+1)+3。
上面式子中的(6N+1)+3和(6N+5)+3,意思是说:当偶数不能被素数3整除时,偶数-3一定不能够被素数3整除,如果偶数-3不能够被其它删除因子整除,那么,(偶数-3)+3,必然为适应该偶数的素数对。
∵:(6N+1),(6N+5),式子中的N都是取自然数。(6N+1)中的N≠0。
∴:(6N+1),(6N+5)的值都是奇数。不能被素数2整除,同时都不能被素数3整除。
故,任何大于6的偶数分解为:(6N+1)+(6N+5);(6N+1)+(6N+1);(6N+5)+(6N+5)时,只要这些加数与被加数,都不能被≥5的素数删除因子删除,那么,没有被大素数删除因子删除的加数与被加数所组成的奇数对,就是适应该偶数(1+1)的“哥德巴赫猜想”的解。
如何确定≥6的偶数为哪种类型的偶数呢?如果偶数能够被6整除,为6X型;如果偶数-2能够被6整除,为6X+2型;如果偶数-4能够被6整除,为6X+4型。
(1)、任意偶数的奇数对,即:素数2删除偶数对后,自然数中剩余的都是奇数,能够表示为自然数之和等于该偶数的为奇数对。设任意偶数为M,因自然数1不是素数,故任意偶数的奇数对为:(M-2)/4;
(2)、素数2、3删除后的剩余奇数对为:当偶数能够被素数 3整除时,即6X型,每三个奇数对必然剩余两个奇数对,为(M-2)/4*2/3=(M-2)/6,举例说明:如偶数96能够被3整除,为6X型,(96-2)/6≈15,为15个奇数对。实际为5+91,11+85,17+79,23+73,29+67,35+61,41+55,47+49,53+43,59+37,65+31,71+25,77+19,83+13,89+7,共15个奇数对。组成奇数对的加数和被加数与(6N+1)+(6N+5)的搭配相稳合。
如果偶数M不能被素数3整除,那么,素数2和3删除后的剩余奇数为:每三对奇数剩余一对奇数,即:(M-2)/4*1/3=(M-2)/12。举例说明:偶数56为6X+2型,(56-2)/12≈4,实际为7+49,13+43,19+37,25+31共4个奇数对,组成奇数对的加数和被加数与(6N+1)+(6N+1)的搭配相稳合。
偶数64为6X+4型。(64-2)/12≈5,即5对,实际为5+59,11+53,17+47,23+41,29+35共5对,组成奇数对的加数和被加数与(6N+5)+(6N+5)的搭配相稳合。(素数2、3、5删除后的剩余奇数与偶数之间的关系,略。详见《解除三大误区创建三个参数》中的素数对参数表及计算方法)。
那么,怎样计算这些素数2、3删除的剩余奇数对,如何被≥5的素数删除因子册除呢?
从上面这些加数与被加数看,不论是加数与加数之间,还是被加数与被加数之间,都是间隔距离相差6的连续数,根据素数删除规律,设素数删除因子为N,如果偶数不能够被素数删除因子N整除,且N≥5,因为,这些连续奇数的间隔都不是≥5的素数删除因子的倍数,应该是N个连续奇数中,必然有一个奇数是素数N的倍数的数,即必然被素数删除因子N删除一个数,并且只有这样一个N的倍数的数字为删除数。对于加数来说,素数N应该删除1/N个,对于被加数来说素数N应该删除1/N个,都必然只删除1/N个,合计应该删除2/N,必然剩余(N-2)/N为剩余奇数对。如果偶数能够被素数删除因子N整除,那么,素数删除因子对组成偶数奇数对的加数与被加数的删除是完全对应的,素数删除因子N只能删除偶数奇数对的1/N对。因此,我们把不能够被所有奇素数删除因子整除的偶数称为最低素数对偶数。下面,我们就计算最低素数对偶数的素数对:
则有:设任意偶数为M,设√M≈N,删除因子为:2,3,5,7,11,…N,
当偶数不能被所有奇素数删除因子整除时,素数对≥(M-2)/4*1/3*3/5*5/7*9/11*……(N-2)/N。我们把这个式子,叫做最低素数对偶数表达式或者说叫素数对下界公式。
为什么说,上面式子中≥成立呢?大于是因为,我们在这个式子的计算中,都是按不论是加数还是被加数,只要删除其中的一个数,即删除一个奇数对的计算方法。在这个式子中没有排除不同的素数删除因子,共同删除一个奇数对的事实。如果排除,实际删除的就还要少,剩余的就还要多。所以,这里的≥成立。至于,同一素数删除因子删除一个奇数对的加数和被加数的现象等,后面再说。
根据乘法规律,任何数字乘以小于1的数,数值变小,设合数为Z,则(Z-2)/Z<1,我们将小于最大删除因子N的奇合数空缺,代入(Z-2)/Z,则当偶数不能被6整除时,素数对≥(M-2)/4*1/3*3/5*5/7*9/11*……(N-2)/N>(M-2)/4*1/3*3/5*5/7*7/9*9/11*11/13*13/15*15/17……(N-2)/N=(M-2)/4N,
∵:只有当M>N*N+3时,(因为1不是素数,我们在计算奇数对时就排除了偶数的两个自然数),故,N才对偶数M发挥删除作用。M-2≥N*N+3,其实,对于大偶数来说,也不在乎2个自然数的差距(我们在取素数删除因子时,往往远远超过偶数的两个自然数的关系)。我们将M-2换成N*N,代入上式,有偶数的最低素数对≥(M-2)/4N≈N*N/4N=N/4。
即:偶数的最低素数对≥N/4,N为偶数的最大删除因子。 当然,N也可以为偶数平方根取最大的整数。
同一素数删除因子在删除一个奇数对的加数数列和被加数数列时。从上面的偶数96可以看出:96能够被6整除,也就是能被素数3整除,那么,素数3对于(M-2)/4的奇数对的删除中,对于奇数对的加数数列与被加数数列的删除,是完全对应的。所以,素数3对于奇数对的删除为:每三个奇数对只能删除一个奇数对,必须剩余两个奇数对。假设我们将能够被素数3整除的偶数,按照不能被素数3整除的偶数(最低素数对偶数)进行计算,那么,就多删除了1/3。
如果我们认定不能被任何奇素数整除的偶数的素数对的计算,为最低素数对的计算方法。那么,能够被素数3整除的偶数就应该为最低素数对除以2/3后乘以1/3,我们设偶数能够被素数删除因子整除的删除因子为L,即最低素数对除以(L-1)/L后乘以(L-2)/L,即最低素数对乘以(L-1)/(L-2)。我们知道偶数最低素数对≥N/4,如:偶数能够被素数3整除,素数对则≥N/4*(3-1)/(3-2)=N/2;又如:偶数能够被素数删除因子5整除,素数对≥N/4*(5-1)/(5-2)=N/3,能够被其它删除因子整除的,照猫画虎;能够被多个素数删除因子整除的,应该同时这样进行计算。这就是人们所看见的相邻不同的偶数,素数对的多少参差不齐的原因所在。是因为,偶数的大小虽然相邻,但能被那些删除因子整除,并不相同。
从上面的计算:当偶数不能被所有素数删除因子整除时,素数对≥N/4。当N/4≥1时,必然有素数对,也就是最大的删除因子大于4,也就是偶数≥16时,必然有素数对。
素数删除因子N>4,即N≥5,素数删除因子N≥5,偶数必须>25,是因为√25=5。在实际验算中,这种偶数≥16时,不能被素数删除因子3整除的偶数,就有(6N+1)+(6N+1)或(6N+5)+(6N+5)素数对的存在。如:16=5+11,20=7+13。设偶数为M,当M≥16时,√M≥4,偶数M的素数对≥1,“哥德巴赫猜想”成立。
再从能够被素数3整除的偶数,素数对≥N/2看,因为2不是奇素数,故当N≥3时,偶数必须>9,是因为√9=3,当偶数为12时有,5+7,偶数为18时有,7+11,5+13,都是(6N+1)+(6N+5)的素数对。设偶数为M,当M≥12时,√M>2,偶数M的素数对≥1,“哥德巴赫猜想”成立。
∵:当任意偶数≥16时,√M>4,即N>4,N/4>1,必然有(1+1)的素数对,同时,我们知道当偶数≥6至14时,也有(1+1)的素数对。
∴:哥德巴赫猜想是成立的。
说明:这种计算方法的缺陷如下:
1、在对大偶数的计算中,如果说,我们仍然按照偶数平方根以下的素数为删除因子,对组成偶数奇数对的加数数列与被加数数列进行删除计算的话,那么,偶数越大,素数对的误差越大。是因为,我们设偶数为M,组成偶数的加数数列与被加数数列,必然有一个数列的数字小于M/2,这个数列的实际删除因子只为 √(M/2)以内的素数,我们同样用√M以内的素数进行计算,就将不该删除的进行了删除。所以,我们在进行大偶数的计算时,还可以在上面的最低素数对的基础上,针对所有多余删除的素数因子N(即,大于√(M/2),小于√M之间的素数),上面是通乘以(N-2)/N作为素数N对奇数对加数数列和被加数数列的删除,实际上,对于这一段的素数N只能删除加数数列与被加数数列的一个数列,即多乘以了(N-1)/N。更正,对这些素数删除因子N,在上面得数的基础上,乘以N/(N-1),为该偶数的素数对;
2、从计算出最低素数对得数为N/4时,我们增加了不该增加的合数删除因子。为什么说不该增加,是因为:合数倍数的数虽然是删除数,但是,合数倍数的数是由组成合数的素数删除因子删除了的,而不应该增加合数删除因子。所以,我们在上面所计算出和得数的基础上,应该对所增加的合数删除因子N,在上面的计算中增加了乘以(N-2)/N,在这里进行更正的话,应该用上面的得数除以(N-2)/N或者乘以N/(N-2);
3、对于大偶数,存在多个素数删除因子,对组成偶数的加数数列与被加数数列的同时删除,不同的素数删除同一个加数与被加数时,在上面的计算中,我们示为删除了两个奇数对,但,实际上只删除了一个奇数对,所以,上面的这种计算方法存在:计算数小于实际素数对的现象;
4、我们在上面的计算中,是按照每一个素数删除因子的删除单独进行计算的,这种计算方法对于小偶数来说,由于这种现象不存在,对于大偶数来说:由于偶数的增大,组成奇数对的奇数也随着增大,因为,任何合数都是两个或两个以上素数的乘积,多个素数对同一个合数的删除,我们并没有进行分开,示为这多个素数删除因子删除了多个奇数,也就是删除了多个奇数对,所以,大偶数的实际素数对大于这里所计算的素数对。
所有大于2的偶数,是不是都可以表示为两个质数的和呢?
是不是所有两个质数的和,都是大于2的偶数呢?(未知对某对)
先看:
4=2+2
6=3+3
8=3+5
10=5+5=7+3
……
又看:
(除2,因为一和2相加的除了2的质数都是奇数)
2+2=4
2+4=6
4+4=8
4+6=10
……
这样推导,很容易就知道后面的两质数和是绝对没有2出现。
已知既是偶数又是质数的数只有2,所有的偶数都能被2整除,因为除了2是偶数的质数就木有了,奇数加奇数都是偶数。
————————————
重点其实就是后面的偶数的质数里有没有2!已知所有的偶数除了4减掉2得出的数都是偶数,
所以…………
正确。。。(若错就不要喷了……)
2n=n+n 4n=(2n+1)+(2n-1)
所以,当n为奇数时,适用2n=n+n
当n为偶数时,适用4n=(2n+1)+(2n-1)
由此证明:任何一个偶数都能用两个奇数来表示
2014-09-28
(1) 有关 2+1=3 的证明步骤,陈景润在中科院主办的“中国科学”期刊上可以查看。
(2) 请您去新浪网吕明进博客阅看2014年9月公布题为<<关键点证明法与对称奇素数定理之证明>>和2013年5月31日公布的题为<<对称奇素数定理与应用(修正全文)>>或2013年7月31日公布的题为<<哥德巴赫猜想证明(全文)>>。那里就有哥德巴赫猜想详细证明过程和步骤,一看便知!