【离散数学】【二元关系】设R和S都是集合A上的关系,证明:
1个回答
展开全部
必要性:
任取<x,z>∈R。S,因为R。S具有对称性,故<z,x>∈R。S,则一定存在y使得<z,y>∈R,且<y,x>∈S,又因为R,S有对称性,故有<x,y>∈S,且<y,z>∈R,故<x,z>∈S。R,这就证明了R。S含于S。R,同样地,可证S。R含于R。S,这就证明了S。R=R。S
充分性:
任取<x,z>∈R。S,因为S。R=R。S,故<x,z>∈S。R,则一定存在y使得<x,y>∈S,且<y,z>∈R,又因为R S具有对称性,故 <z,y>∈R,<y,x>∈S,故<z,x>∈R。S,故R。S具有对称性
任取<x,z>∈R。S,因为R。S具有对称性,故<z,x>∈R。S,则一定存在y使得<z,y>∈R,且<y,x>∈S,又因为R,S有对称性,故有<x,y>∈S,且<y,z>∈R,故<x,z>∈S。R,这就证明了R。S含于S。R,同样地,可证S。R含于R。S,这就证明了S。R=R。S
充分性:
任取<x,z>∈R。S,因为S。R=R。S,故<x,z>∈S。R,则一定存在y使得<x,y>∈S,且<y,z>∈R,又因为R S具有对称性,故 <z,y>∈R,<y,x>∈S,故<z,x>∈R。S,故R。S具有对称性
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询