1个回答
2017-05-03
展开全部
重点:不等式证明的主要方法的意义和应用;
难点:①理解分析法与综合法在推理方向上是相反的;
②综合性问题选择适当的证明方法.
(1)不等式证明的意义
不等式的证明是要证明对于满足条件的所有数都成立(或都不成立),而并非是带入具体的数值去验证式子是否成立.
(2)比较法证明不等式的分析
①在证明不等式的各种方法中,比较法是最基本、最重要的方法.
②证明不等式的比较法,有求差比较法和求商比较法两种途径.
由于 ,因此,证明 ,可转化为证明与之等价的 .这种证法就是求差比较法.
由于当 时,,因此,证明 可以转化为证明与之等价的 .这种证法就是求商比较法,使用求商比较法证明不等式 时,一定要注意 的前提条件.
③求差比较法的基本步骤是:“作差——变形——断号”.
其中,作差是依据,变形是手段,判断符号才是目的.
变形的目的全在于判断差的符号,而不必考虑差值是多少.
变形的方法一般有配方法、通分的方法和因式分解的方法等,为此,有时把差变形为一个常数,或者变形为一个常数与一个或几个数的平方和的形式.或者变形为一个分式,或者变形为几个因式的积的形式等. 总之.能够判断出差的符号是正或负即可.
④作商比较法的基本步骤是:“作商——变形——判断商式与1的大小关系”,需要注意的是,作商比较法一般用于不等号两侧的式子同号的不等式的证明.
难点:①理解分析法与综合法在推理方向上是相反的;
②综合性问题选择适当的证明方法.
(1)不等式证明的意义
不等式的证明是要证明对于满足条件的所有数都成立(或都不成立),而并非是带入具体的数值去验证式子是否成立.
(2)比较法证明不等式的分析
①在证明不等式的各种方法中,比较法是最基本、最重要的方法.
②证明不等式的比较法,有求差比较法和求商比较法两种途径.
由于 ,因此,证明 ,可转化为证明与之等价的 .这种证法就是求差比较法.
由于当 时,,因此,证明 可以转化为证明与之等价的 .这种证法就是求商比较法,使用求商比较法证明不等式 时,一定要注意 的前提条件.
③求差比较法的基本步骤是:“作差——变形——断号”.
其中,作差是依据,变形是手段,判断符号才是目的.
变形的目的全在于判断差的符号,而不必考虑差值是多少.
变形的方法一般有配方法、通分的方法和因式分解的方法等,为此,有时把差变形为一个常数,或者变形为一个常数与一个或几个数的平方和的形式.或者变形为一个分式,或者变形为几个因式的积的形式等. 总之.能够判断出差的符号是正或负即可.
④作商比较法的基本步骤是:“作商——变形——判断商式与1的大小关系”,需要注意的是,作商比较法一般用于不等号两侧的式子同号的不等式的证明.
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询