微积分里“”dx”是什么意思 ?
dx表示x变化无限小的量,其中d表示“微分”,是“derivative(导数)”的第一个字母。
当一个变量x,越来越趋向于一个数值a时,这个趋向的过程无止境的进行,x与a的差值无限趋向于0,就说a是x的极限。这个差值,称它为“无穷小”,它是一个越来越小的过程,一个无限趋向于0的过程,它不是一个很小的数,而是一个趋向于0的过塌闹程。薯裤
如果x1与x2差距很小,这个小是有限的小。当x1与x2的差距在无止境的减小,无止境的靠近,在靠近的过程中,x1与x2的差距无止境的趋近于0。这时就写成dx,也数衫简就是说,Δx是有限小的量,
dx是无限小的量。
扩展资料
微分的几何意义
设Δx是曲线y = f(x)上的点M的在横坐标上的增量,Δy是曲线在点M对应Δx在纵坐标上的增量,dy是曲线在点M的切线对应Δx在纵坐标上的增量。f'(x0)在表示曲线y=f(x)在切点M(x0,f(x0))处切线的斜率。当|Δx|很小时,|Δy-dy|比|Δx|要小得多(高阶无穷小),因此在点M附近,可以用切线段来近似代替曲线段。
由直线点斜式方程可知切线方程为:y-y0=f'(x0)(x-x0),两条互相垂直的直线的斜率之积为-1,而切线与法线垂直,故法线方程为:y-y0=-1/f'(x0)*(x-x0) (f'(x0)≠0)
参考资料来源:百度百科-微分
释义:是指x变化极小量。d后面跟一个x的表达式,当x变化极小后,相应的表达式值发生很小的变化。
dx是微分符号,微分分为一元微分和多元微分。
定义
设函数y = f(x)在某区间内有定义,x0及x0 + Δx在此区间内。如果函数的Δy = f(x0 + Δx) − f(x0)可表示为 Δy = AΔx0 + o(Δx0)(其中A是不依赖于Δx的常数),而o(Δx0)是比Δx高阶的无穷小,那么称函数f(x)在点x0是可微的,且AΔx称作碰圆搏函数在点x0相应于自变量增量Δx的微分,记作dy,即dy = AΔx。通常把腔稿自变量x的增量 Δx称为自变量的微分,记作dx,即dx = Δx。于是函数y = f(x)的微分又可记作dy = f'(x)dx。函数的笑祥微分与自变量的微分之商等于该函数的导数。因此,导数也叫做微商。
几何意义
微分设Δx是曲线y = f(x)上的点M的在横坐标上的增量,Δy是曲线在点M对应Δx在纵坐标上的增量,dy是曲线在点M的切线对应Δx在纵坐标上的增量。当|Δx|很小时,|Δy-dy|比|Δy|要小得多(高阶无穷小),因此在点M附近,我们可以用切线段来近似代替曲线段。