高数类试题,求详解。仅有一道基础题哦。
2个回答
展开全部
首先,cost^2是没有初等积分表达式的,职能使用泰勒展开式,而:
cosx=1-x^2/2!+x^4/4!+...+(-1)^kx^2k/(2k)!+o(x(2k+2))
则cost^2=1-t^4/2!+x^8/4!+...+(-1)^kx^4k/(2k)!+o(x(4k+4))
带入∫cost^2dt (0→x)
则 =∫[1-t^4/2!+x^8/4!+...+(-1)^kx^4k/(2k)!+o(x(4k+4))]dt (0→x)
=t-t^5/(5*2!)+t^9/(9*4!)+...+(-1)^kt^(4k+1)/[(4k+1)*(2k)!]+o(t(4k+5))| (0,x)
=x-x^5/(5*2!)+x^9/(9*4!)+...+(-1)^kx^(4k+1)/[(4k+1)*(2k)!]+o(x(4k+5))
则x→0时,
x-x^5/(5*2!)+x^9/(9*4!)+...+(-1)^kx^(4k+1)/[(4k+1)*(2k)!]+o(x(4k+5))=0
所以,原式=0
cosx=1-x^2/2!+x^4/4!+...+(-1)^kx^2k/(2k)!+o(x(2k+2))
则cost^2=1-t^4/2!+x^8/4!+...+(-1)^kx^4k/(2k)!+o(x(4k+4))
带入∫cost^2dt (0→x)
则 =∫[1-t^4/2!+x^8/4!+...+(-1)^kx^4k/(2k)!+o(x(4k+4))]dt (0→x)
=t-t^5/(5*2!)+t^9/(9*4!)+...+(-1)^kt^(4k+1)/[(4k+1)*(2k)!]+o(t(4k+5))| (0,x)
=x-x^5/(5*2!)+x^9/(9*4!)+...+(-1)^kx^(4k+1)/[(4k+1)*(2k)!]+o(x(4k+5))
则x→0时,
x-x^5/(5*2!)+x^9/(9*4!)+...+(-1)^kx^(4k+1)/[(4k+1)*(2k)!]+o(x(4k+5))=0
所以,原式=0
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询