大数据开发常用的编程语言有哪些?

 我来答
西线大数据培训
2018-01-04 · TA获得超过3275个赞
知道小有建树答主
回答量:410
采纳率:0%
帮助的人:117万
展开全部
1、Python语言
如果你的数据科学家不使用R,他们可能就会彻底了解Python。十多年来,Python在学术界当中一直很流行,尤其是在自然语言处理(NLP)等领域。因而,如果你有一个需要NLP处理的项目,就会面临数量多得让人眼花缭乱的选择,包括经典的NTLK、使用GenSim的主题建模,或者超快、准确的spaCy。同样,说到神经网络,Python同样游刃有余,有Theano和Tensorflow;随后还有面向机器学习的scikit-learn,以及面向数据分析的NumPy和Pandas。
还有Juypter/iPython――这种基于Web的笔记本服务器框架让你可以使用一种可共享的日志格式,将代码、图形以及几乎任何对象混合起来。这一直是Python的杀手级功能之一,不过这年头,这个概念证明大有用途,以至于出现在了奉行读取-读取-输出-循环(REPL)概念的几乎所有语言上,包括Scala和R。
Python往往在大数据处理框架中得到支持,但与此同时,它往往又不是“一等公民”。比如说,Spark中的新功能几乎总是出现在Scala/Java绑定的首位,可能需要用PySpark编写面向那些更新版的几个次要版本(对Spark Streaming/MLLib方面的开发工具而言尤为如此)。
与R相反,Python是一种传统的面向对象语言,所以大多数开发人员用起来会相当得心应手,而初次接触R或Scala会让人心生畏惧。一个小问题就是你的代码中需要留出正确的空白处。这将人员分成两大阵营,一派觉得“这非常有助于确保可读性”,另一派则认为,我们应该不需要就因为一行代码有个字符不在适当的位置,就要迫使解释器让程序运行起来。
2、R语言
在过去的几年时间中,R语言已经成为了数据科学的宠儿——数据科学现在不仅仅在书呆子一样的统计学家中人尽皆知,而且也为华尔街交易员,生物学家,和硅谷开发者所家喻户晓。各种行业的公司,例如Google,Facebook,美国银行,以及纽约时报都使用R语言,R语言正在商业用途上持续蔓延和扩散。
R语言有着简单而明显的吸引力。使用R语言,只需要短短的几行代码,你就可以在复杂的数据集中筛选,通过先进的建模函数处理数据,以及创建平整的图形来代表数字。它被比喻为是Excel的一个极度活跃版本。
R语言最伟大的资本是已围绕它开发的充满活力的生态系统:R语言社区总是在不断地添加新的软件包和功能到它已经相当丰富的功能集中。据估计,超过200万的人使用R语言,并且最近的一次投票表明,R语言是迄今为止在科学数据中最流行的语言,被61%的受访者使用(其次是Python,39%)。
3、JAVA
Java,以及基于Java的框架,被发现俨然成为了硅谷最大的那些高科技公司的骨骼支架。 “如果你去看Twitter,LinkedIn和Facebook,那么你会发现,Java是它们所有数据工程基础设施的基础语言,”Driscoll说。
Java不能提供R和Python同样质量的可视化,并且它并非统计建模的最佳选择。但是,如果你移动到过去的原型制作并需要建立大型系统,那么Java往往是你的最佳选择。
4、Hadoop和Hive
一群基于Java的工具被开发出来以满足数据处理的巨大需求。Hadoop作为首选的基于Java的框架用于批处理数据已经点燃了大家的热情。Hadoop比其他一些处理工具慢,但它出奇的准确,因此被广泛用于后端分析。它和Hive——一个基于查询并且运行在顶部的框架可以很好地结对工作。
陕西新华电脑学校
2021-03-22 · 百度认证:陕西新华电脑软件培训学校官方账号
陕西新华电脑学校
陕西新华电脑软学校位于西咸新区秦汉新城兰池二路东段,隶属于新华教育集团,是经陕西省人力资源和社会保障厅批准成立的一所大型互联网教育学校,是陕西省专业的互联网人才培养基地,交通便利,学风醇厚
向TA提问
展开全部

已赞过 已踩过<
你对这个回答的评价是?
评论 收起
飞燕吖吖的世界
2019-12-24 · TA获得超过3728个赞
知道大有可为答主
回答量:3084
采纳率:33%
帮助的人:208万
展开全部
R语言:它的有点在于简单易上手,通过R语言,你可以从复杂的数据集中筛选你想要的数据,从负责的模型函数中操作数据,建立有序的图表呈现数字,只需要几行代码就可以了,比如说,像是好动版本的Excel表格。
Pythom语言:Python结合了R语言的快速,处理复杂数据的能力以及更务实的语言特质,迅速地成为主流,也更简单和直观了,尤其是近几年的成长很快。在数据处理范畴内,通常在规模与复杂之间要有个取舍,Python以折中的姿态出现,是相当好的数据处理工具。
java语言:java没有和Python和R语言一样好的可视化功能,也不是统计建模的最佳工具,但是如果你需要建立一个庞大的系统,使用过去的原型,java是最基本的选择了。
Hadoop
pand
Hive:为了迎合大量数据处理的需求,以java为基础的大数据开始了。Hadoop为一批数据处理,发展以java为基础的架构关键,相对于其他处理工具,Hadoop慢许多,但是无比的准确可被后端数据库分析广泛使用,和Hive搭配的很好。
Scala:另一个以java为基础的语言,和java很像,对任何想要进行大规模的机械学习或是建立高阶的算法,Scala是逐渐兴起的工具,善于呈现且拥有建立可靠系统的能力。
Kafkaand
Storm:是一个特别快速的查询信息系统,缺点是太快了,因此在实施操作时会犯错,有时候会漏掉东西。使用Scala写出来的架构,大幅增加他在串流处理的受欢迎程度。
www.okeycar.com
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
匿名用户
2018-10-26
展开全部

这是我在lanou官网上看的,具体可以了解下

已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 2条折叠回答
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式