怎么求复数的模?
5个回答
展开全部
设复数z=a+bi(a,b∈R),则复数z的模|z|= ,它的几何意义是复平面上一点(a,b)到原点的距离。
运算法则:
| z1·z2| = |z1|·|z2|
┃| z1|-| z2|┃≤| z1+z2|≤| z1|+| z2|
| z1-z2| = | z1z2|,是复平面的两点间距离公式,由此几何意义可以推出复平面上的直线、圆、双曲线、椭圆的方程以及抛物线。
扩展资料
运算法则
1、加法法则
复数的加法法则:设z1=a+bi,z2=c+di是任意两个复数。两者和的实部是原来两个复数实部的和,它的虚部是原来两个虚部的和。两个复数的和依然是复数。
2、乘法法则
复数的乘法法则:把两个复数相乘,类似两个多项式相乘,结果中i2= -1,把实部与虚部分别合并。两个复数的积仍然是一个复数。
3、除法法则
复数除法定义:满足 的复数 叫复数a+bi除以复数c+di的商。
运算方法:将分子和分母同时乘以分母的共轭复数,再用乘法法则运算,
4、开方法则
若zn=r(cosθ+isinθ),则 (k=0,1,2,3…n-1)
参考资料:百度百科——复数
参考资料:百度百科——模
展开全部
设复数z=a+bi(a,b∈R),它的几何意义是复平面上一点(a,b)到原点的距离。
运算法则:
| z1·z2| = |z1|·|z2|
┃| z1|-| z2|┃≤| z1+z2|≤| z1|+| z2|
| z1-z2| = | z1z2|,是复平面的两点间距离公式,由此几何意义可以推出复平面上的直线、圆、双曲线、椭圆的方程以及抛物线。
扩展资料:
运算法则
1、加法法则
复数的加法法则:设z1=a+bi,z2=c+di是任意两个复数。两者和的实部是原来两个复数实部的和,它的虚部是原来两个虚部的和。两个复数的和依然是复数。
2、乘法法则
复数的乘法法则:把两个复数相乘,类似两个多项式相乘,结果中i2= -1,把实部与虚部分别合并。两个复数的积仍然是一个复数。
运算法则:
| z1·z2| = |z1|·|z2|
┃| z1|-| z2|┃≤| z1+z2|≤| z1|+| z2|
| z1-z2| = | z1z2|,是复平面的两点间距离公式,由此几何意义可以推出复平面上的直线、圆、双曲线、椭圆的方程以及抛物线。
扩展资料:
运算法则
1、加法法则
复数的加法法则:设z1=a+bi,z2=c+di是任意两个复数。两者和的实部是原来两个复数实部的和,它的虚部是原来两个虚部的和。两个复数的和依然是复数。
2、乘法法则
复数的乘法法则:把两个复数相乘,类似两个多项式相乘,结果中i2= -1,把实部与虚部分别合并。两个复数的积仍然是一个复数。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
2017-12-25 · 知道合伙人影视综艺行家
关注
展开全部
复数的模:将复数的实部与虚部的平方和的正的平方根的值,记作∣z∣.
即对于复数z=a+bi,它的模:∣z∣=√(a^2+b^2)
复数的集合用C表示,实数的集合用R表示,显然,R是C的真子集。
复数x被定义为二元有序实数对(a,b),记为z=a+bi,这里a和b是实数,i是虚数单位。在复数a+bi中,a=Re(z)称为实部,b=Im(z)称为虚部。当虚部等于零时,这个复数可以视为实数;当z的虚部不等于零时,实部等于零时,常称z为纯虚数。复数域是实数域的代数闭包,也即任何复系数多项式在复数域中总有根。 复数是由意大利米兰学者卡当在十六世纪首次引入,经过达朗贝尔、棣莫弗、欧拉、高斯等人的工作,此概念逐渐为数学家所接受。
复数的四则运算规定为:
加法法则:(a+bi)+(c+di)=(a+c)+(b+d)i;
减法法则:(a+bi)-(c+di)=(a-c)+(b-d)i;
乘法法则:(a+bi)·(c+di)=(ac-bd)+(bc+ad)i;
除法法则:(a+bi)÷(c+di)=[(ac+bd)/(c²+d²)]+[(bc-ad)/(c²+d²)]i.
即对于复数z=a+bi,它的模:∣z∣=√(a^2+b^2)
复数的集合用C表示,实数的集合用R表示,显然,R是C的真子集。
复数x被定义为二元有序实数对(a,b),记为z=a+bi,这里a和b是实数,i是虚数单位。在复数a+bi中,a=Re(z)称为实部,b=Im(z)称为虚部。当虚部等于零时,这个复数可以视为实数;当z的虚部不等于零时,实部等于零时,常称z为纯虚数。复数域是实数域的代数闭包,也即任何复系数多项式在复数域中总有根。 复数是由意大利米兰学者卡当在十六世纪首次引入,经过达朗贝尔、棣莫弗、欧拉、高斯等人的工作,此概念逐渐为数学家所接受。
复数的四则运算规定为:
加法法则:(a+bi)+(c+di)=(a+c)+(b+d)i;
减法法则:(a+bi)-(c+di)=(a-c)+(b-d)i;
乘法法则:(a+bi)·(c+di)=(ac-bd)+(bc+ad)i;
除法法则:(a+bi)÷(c+di)=[(ac+bd)/(c²+d²)]+[(bc-ad)/(c²+d²)]i.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询