两种曲线积分的区别是什么?
展开全部
很容易区分呀。第一类曲线积分表达式中是ds。第二类曲线积分表达式中是dx+dy,或只有dx或只有dy。
另外,这两类曲线积分的物理意义是完全不同的,要想真正弄清这两类曲线积分的区别,建议好好看看书,把他们的物理意义弄明白了就很容易区分了。具体如下:
一类曲线是对曲线的长度,二类是对x,y坐标。怎么理解呢?告诉你一根线的线密度,问你线的质量,就要用一类。告诉你路径曲线方程,告诉你x,y两个方向的力,求功,就用二类。二类曲线也可以把x,y分开,这样就不难理解一二类曲线积分之间的关系了,它们之间就差一个余弦比例。
一二类曲面积分也是一样的。一类是对面积的积分,二类是对坐标的。告诉你面密度,求面质量,就用一类。告诉你x,y,z分别方向上的流速,告诉你面方程,求流量,就用第二类。同理,x,y,z方向也是可以分开的,分开了也就不难理解一二类曲面积分的关系了。
你要把以上两点都能理解的话,再去看高斯公式与流量,斯托克斯公式与旋度,这两个是线面体积分转化的两个公式,都理解了就没问题了。
学积分,重要的就是要理解:积分就等于是求积(乘法的积)。积分就是乘法。因为变量在连续变化,我不能直接乘,所以有了微积分来微元了再乘。一类线面积分就是函数和线面乘,二类线面积分就是函数和坐标乘。
另外,这两类曲线积分的物理意义是完全不同的,要想真正弄清这两类曲线积分的区别,建议好好看看书,把他们的物理意义弄明白了就很容易区分了。具体如下:
一类曲线是对曲线的长度,二类是对x,y坐标。怎么理解呢?告诉你一根线的线密度,问你线的质量,就要用一类。告诉你路径曲线方程,告诉你x,y两个方向的力,求功,就用二类。二类曲线也可以把x,y分开,这样就不难理解一二类曲线积分之间的关系了,它们之间就差一个余弦比例。
一二类曲面积分也是一样的。一类是对面积的积分,二类是对坐标的。告诉你面密度,求面质量,就用一类。告诉你x,y,z分别方向上的流速,告诉你面方程,求流量,就用第二类。同理,x,y,z方向也是可以分开的,分开了也就不难理解一二类曲面积分的关系了。
你要把以上两点都能理解的话,再去看高斯公式与流量,斯托克斯公式与旋度,这两个是线面体积分转化的两个公式,都理解了就没问题了。
学积分,重要的就是要理解:积分就等于是求积(乘法的积)。积分就是乘法。因为变量在连续变化,我不能直接乘,所以有了微积分来微元了再乘。一类线面积分就是函数和线面乘,二类线面积分就是函数和坐标乘。
展开全部
说简单点:对弧长的积分只是对“弧长的大小积分”,而对坐标的积分则包含对“大小与方向”两个方面的积分。从形式上看,对弧长的积分是标量之间的乘法,对坐标的积分是向量之间的点乘。
说点物理方面的应用应该更容易理解(这两个例子其实就是高数书上引出两类曲线积分的引例,也是普通物理的基础):
(1)设想有一根绳子,其质量线密度λ并不均匀,即它是沿绳子曲线每点位置坐标的函数λ(r),如何求出这条绳子的总质量?只要把λ(r)与对应位置的弧微分ds相乘就得到对应ds长度的质量,再对它沿着绳子曲线l积分就得到绳子的总质量了,即m=∫λ(r)ds,积分路径是绳子对应的曲线l。这个是对弧长的积分。
(2)设想有一质点在变力f(r)(f和r都是矢量,有大小有方向)的作用下,沿着轨迹s运动,如何求出某一段时间内变力f对质点所做的总功?只要把变力f(r)与某一微小时间间隔内的位移dr点乘,就可以得到这一小段时间内力对质点做的微功,然后再对质点运动轨迹s积分就可以得到力对质点做的总功,即w=∫f(r)·dr,积分路径是质点运动的轨迹s。这个是对坐标的积分。(这里所有的表达式都是矢量)
很容易看出两者的区别,这两类积分的名称就是从积分微元上定义的,ds是弧微分,dr是坐标微分(位移)。当然也能看出两者的联系,只要我们将对坐标的积分限定一个方向,比如我只要知道变力f在竖直方向上对质点做了多少功,只要将(2)中表达式把dr分开,写成方位角乘以弧长ds的形式,对坐标积分就可以变为对弧长积分。这就反映出两种积分的关系:投影关系。
说点物理方面的应用应该更容易理解(这两个例子其实就是高数书上引出两类曲线积分的引例,也是普通物理的基础):
(1)设想有一根绳子,其质量线密度λ并不均匀,即它是沿绳子曲线每点位置坐标的函数λ(r),如何求出这条绳子的总质量?只要把λ(r)与对应位置的弧微分ds相乘就得到对应ds长度的质量,再对它沿着绳子曲线l积分就得到绳子的总质量了,即m=∫λ(r)ds,积分路径是绳子对应的曲线l。这个是对弧长的积分。
(2)设想有一质点在变力f(r)(f和r都是矢量,有大小有方向)的作用下,沿着轨迹s运动,如何求出某一段时间内变力f对质点所做的总功?只要把变力f(r)与某一微小时间间隔内的位移dr点乘,就可以得到这一小段时间内力对质点做的微功,然后再对质点运动轨迹s积分就可以得到力对质点做的总功,即w=∫f(r)·dr,积分路径是质点运动的轨迹s。这个是对坐标的积分。(这里所有的表达式都是矢量)
很容易看出两者的区别,这两类积分的名称就是从积分微元上定义的,ds是弧微分,dr是坐标微分(位移)。当然也能看出两者的联系,只要我们将对坐标的积分限定一个方向,比如我只要知道变力f在竖直方向上对质点做了多少功,只要将(2)中表达式把dr分开,写成方位角乘以弧长ds的形式,对坐标积分就可以变为对弧长积分。这就反映出两种积分的关系:投影关系。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询