=(1-cos6x)(1-cos4x)sin2x/4
=(1-cos6x-cos4x+cos6xcos4x)sin2x/4
=[2sin2x-2sin2xcos6x-2sin2xcos4x+sin2x(cos10x+cos2x)]/8
=[2sin2x-sin8x+sin4x-sin6x+sin2x+(1/2)(sin12x-sin8x+sin4x)]/8
=(6sin2x+3sin4x-2sin6x-3sin8x+sin12x)/16,
所以原式=(1/16)[-3cos2x-(3/4)cos4x+(1/3)cos6x+(3/8)cos8x-(1/12)cos12x]+c.,
还可以设u=cos2x,du=-2sin2xdx,cos6x=4u^3-3u,
原式=(-1/4)∫[1+3u-4u^3)(1-u^2)du
=(-1/4)∫(1+3u-u^2-7u^3+4u^5)du
=(-1/4)[u+(3/2)u^2-(1/3)u^3-(7/4)u^4+(2/3)u^6]+c
=(-1/4)[cos2x+(3/2)(cos2x)^2-(1/3)(cos2x)^3-(7/4)(cos2x)^4+(2/3)(cos2x)^6]+c.
cos(A-B)= cosA.cosB + sinA.sinB
cos(A+B)= cosA.cosB - sinA.sinB
=>
sinA.sinB = (1/2)[ cos(A-B)-cos(A+B) ]
A=3x, B=2x
sin3x. sin2x = (1/2)[ cosx -cos5x]
(sin3x.sin2x)^2
=(1/4)[ cosx -cos5x]^2
=(1/4) [( cosx)^2-2cosx.cos5x + (cos5x)^2 ]
=(1/4) [ (1/2)(1+ cos2x)-[cos4x+cos6x] + (1/2)(1+cos10x) ]
=(1/8) [ 2 + cos2x -cos4x-cos6x +cos10x]
(sin3x.sin2x)^2 . sin2x
=(1/8) [ 2 + cos2x -cos4x-cos6x +cos10x] . sin2x
=(1/8) [ 2sin2x + cos2x.sin2x -cos4x.sin2x-cos6x.sin2x +cos10x. sin2x]
=(1/8)[2sin2x + (1/2)sin4x -(1/2)(sin6x-sin2x) -(1/2)(sin8x-sin4x) +(1/2)(sin12x-sin8x) ]
=(1/8)[3sin2x + sin4x -(1/2)sin6x -sin8x +(1/2)sin12x ]
=(1/16)[6sin2x + 2sin4x -sin6x -2sin8x +sin12x ]
∫(sin3x)^2 . (sin2x)^3 dx
=∫ [(sin3x).(sin2x)]^2 . sin2x dx
=(1/16)∫[6sin2x + 2sin4x -sin6x -2sin8x +sin12x ] dx
=(1/16)[-3cos2x - (1/2)cos4x +(1/6)cos6x +(1/4)cos8x -(1/2)cos12x ] +C
广告 您可能关注的内容 |