2个回答
展开全部
其实有一个等式,arctan(x)+arctan(1/x)=π/2恒成立
证明如下:令f(x)=arctan(x)+arctan(1/x)
则有f'(x)=0
说明f(x)恒等于一个常数,任取一个容易计算的值可以得到f(x)=π/2。
类似的还有arcsin(x)+arccos(x)=π/2也恒成立。
证明如下:令f(x)=arctan(x)+arctan(1/x)
则有f'(x)=0
说明f(x)恒等于一个常数,任取一个容易计算的值可以得到f(x)=π/2。
类似的还有arcsin(x)+arccos(x)=π/2也恒成立。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
蓝鲸智能科技
2024-11-21 广告
2024-11-21 广告
理论考试系统是我们河南蓝鲸智能科技有限公司研发的一款高效、便捷的在线考试平台。该系统集题库管理、在线组卷、自动评分等功能于一体,支持多种题型和考试模式。通过智能化的防作弊手段,确保考试的公平公正。用户可以随时随地进行在线练习和模拟考试,有效...
点击进入详情页
本回答由蓝鲸智能科技提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询