求下面一道题的解题过程
2个回答
展开全部
max { 1/(n^2+π),1/(n^2+2π),...,1/(n^2+nπ) } = 1/(n^2+π)
min{ 1/(n^2+π),1/(n^2+2π),...,1/(n^2+nπ) } = 1/(n^2+nπ)
=>
n^2/(n^2+nπ) ≤n [ 1/(n^2+π)+1/(n^2+2π)+...+1/(n^2+nπ)]≤ n^2/(n^2+π)
lim(n->∞) n^2/(n^2+nπ) = lim(n->∞) n^2/(n^2+π) = 1
=>
lim(n->∞) n [ 1/(n^2+π)+1/(n^2+2π)+...+1/(n^2+nπ)] = 1
min{ 1/(n^2+π),1/(n^2+2π),...,1/(n^2+nπ) } = 1/(n^2+nπ)
=>
n^2/(n^2+nπ) ≤n [ 1/(n^2+π)+1/(n^2+2π)+...+1/(n^2+nπ)]≤ n^2/(n^2+π)
lim(n->∞) n^2/(n^2+nπ) = lim(n->∞) n^2/(n^2+π) = 1
=>
lim(n->∞) n [ 1/(n^2+π)+1/(n^2+2π)+...+1/(n^2+nπ)] = 1
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询