数学问题,求过程解答
2个回答
展开全部
解:
练习1、a=2bcosC,由正弦定理得:
sinA=2sinBcosC,∵A+B+C=π
→sin(B+C)=sin(π-A)=sinA=2sinBcosC
→sinBcosC+cosBsinC=2sinBcosC
→sinBcosC-cosBsinC=0
→sin(B-C)=0,∵A,B,C是△ABC的内角
→B=C
∴△ABC是等腰三角形
例4、
(1)∵2ccosC=acosB+bcosA,由正弦定理得:2sinCcosC=sinAcosB+sinBcosA
→2sinCcosC=sin(A+B)=sinC
→cosC=1/2
∵C是△ABC的内角
∴C=π/3
(2) c=√3,C=π/3,则A+B=2π/3
由正弦定理,a/sinA=b/sinB=c/sinC=2
2a+b=4sinA+2sinB=4sinA+2sin(2π/3-A)
=4sinA+√3cosA-sinA
=3sinA+√3cosA
=2√3(√3/2sinA+1/2cosA)
=2√3*sin(A+π/6)
∵0<A<2π/3,∴π/6<A+π/6<5π/6
sin(A+π/6)∈(1/2,1]
2√3*sin(A+π/6)∈(√3,2√3]
∴2a+b的取值范围为(√3,2√3]
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询