第二题定积分怎么做
展开全部
∫<0,π>√(1-sinx)dx
=∫<0,π>√[sin(x/2)-cos(x/2)]²dx
=∫<0,π>|sin(x/2)-cos(x/2)|dx
=∫<0,π/2>[cos(x/2)-sin(x/2)]dx+∫<π/2,π>[sin(x/2)-cos(x/2)]dx
=2[sin(x/2)+cos(x/2)]|<0,π/2>-2[cos(x/2)+sin(x/2)]|<π/2,π>
=2{[(√2/2)+(√2/2)]-(0+1)}-2{(0+1)-[(√2/2)+(√2/2)]
=2(√2-1)-2(1-√2)
=4(√2-1)
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
1-sinx=(sin(x/2)-cos(x/2))²
=∫(0.π/2)cos(x/2)-sin(x/2)dx+∫(π/2.π)sin(x/2)-cos(x/2)dx
=(2sin(x/2)+2cos(x/2))+(-2cos(x/2)-2sin(x/2))
=2(√2-1)+2(-1+√2)
=4(√2-1)
=∫(0.π/2)cos(x/2)-sin(x/2)dx+∫(π/2.π)sin(x/2)-cos(x/2)dx
=(2sin(x/2)+2cos(x/2))+(-2cos(x/2)-2sin(x/2))
=2(√2-1)+2(-1+√2)
=4(√2-1)
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询