伯努利方程原理?
2个回答
展开全部
伯努利方程
设在右图的细管中有理想流体在做定常流动,且流动方向从左向右,我们在管的a1处和a2处用横截面截出一段流体,即a1处和a2处之间的流体,作为研究对象.设a1处的横截面积为S1,流速为V1,高度为h1;a2处的横截面积为S2,流速为V2,高度为h2.
思考下列问题:
①a1处左边的流体对研究对象的压力F1的大小及方向如何
②a2处右边的液体对研究对象的压力F2的大小及方向如何
③设经过一段时间Δt后(Δt很小),这段流体的左端S1由a1移到b1,右端S2由a2移到b2,两端移动的距离分别为ΔL1和ΔL2,则左端流入的流体体积和右端流出的液体体积各为多大
它们之间有什么关系
为什么
④求左右两端的力对所选研究对象做的功
⑤研究对象机械能是否发生变化
为什么
⑥液体在流动过程中,外力要对它做功,结合功能关系,外力所做的功与流体的机械能变化间有什么关系
推导过程:
如图所示,经过很短的时间Δt,这段流体的左端S1由a1移到b1,右端S2由a2移到b2,两端移动的距离为ΔL1和ΔL2,左端流入的流体体积为ΔV1=S1ΔL1,右端流出的体积为ΔV2=S2ΔL2.
因为理想流体是不可压缩的,所以有
ΔV1=ΔV2=ΔV
作用于左端的力F1=p1S2对流体做的功为
W1=F1ΔL1
=p1·S1ΔL1=p1ΔV
贝努利方程
静压能与动能的转化公式:1/2*u^2=ΔP/ρ
ΔP=P2-P1;P1=0.1MPa(大气压)
ρ为水的密度1000kg/m3。
u为速度,m/s
ΔP=1/2*ρ*u^2
P2=0.1*1000000+1/2*ρ*u^2
(Pa)
关于量纲:
[kg/m^3*(m/s)^2]=[kg/(m*s^2)]
记得牛顿第二定律F=m*a吗?N=kg*m/s^2,代入上式
=N/m^2=Pa
作用于右端的力F2=p2S2,它对流体做负功(因为右边对这段流体的作用力向左,而这段流体的位移向右),所做的功为
W2=-F2ΔL2=-p2S2ΔL2=-p2ΔV
两侧外力对所选研究液体所做的总功为
W=W1+W2=(p1-p2)ΔV
又因为我们研究的是理想流体的定常流动,流体的密度ρ和各点的流速V没有改变,所以研究对象(初态是a1到a2之间的流体,末态是b1到b2之间的流体)的动能和重力势能都没有改变.这样,机械能的改变就等于流出的那部分流体的机械能减去流入的那部分流体的机械能,即
E2-E1=ρ()ΔV+ρg(h2-h1)ΔV
又理想流体没有粘滞性,流体在流动中机械能不会转化为内能
∴W=E2-E1
(p1-p2)ΔV=ρ(-))ΔV+ρg(h2-h1)ΔV
整理后得:整理后得:
又a1和a2是在流体中任取的,所以上式可表述为
上述两式就是伯努利方程.
当流体水平流动时,或者高度的影响不显著时,伯努利方程可表达为
该式的含义是:在流体的流动中,压强跟流速有关,流速V大的地方压强p小,流速V小的地方压强p大.
设在右图的细管中有理想流体在做定常流动,且流动方向从左向右,我们在管的a1处和a2处用横截面截出一段流体,即a1处和a2处之间的流体,作为研究对象.设a1处的横截面积为S1,流速为V1,高度为h1;a2处的横截面积为S2,流速为V2,高度为h2.
思考下列问题:
①a1处左边的流体对研究对象的压力F1的大小及方向如何
②a2处右边的液体对研究对象的压力F2的大小及方向如何
③设经过一段时间Δt后(Δt很小),这段流体的左端S1由a1移到b1,右端S2由a2移到b2,两端移动的距离分别为ΔL1和ΔL2,则左端流入的流体体积和右端流出的液体体积各为多大
它们之间有什么关系
为什么
④求左右两端的力对所选研究对象做的功
⑤研究对象机械能是否发生变化
为什么
⑥液体在流动过程中,外力要对它做功,结合功能关系,外力所做的功与流体的机械能变化间有什么关系
推导过程:
如图所示,经过很短的时间Δt,这段流体的左端S1由a1移到b1,右端S2由a2移到b2,两端移动的距离为ΔL1和ΔL2,左端流入的流体体积为ΔV1=S1ΔL1,右端流出的体积为ΔV2=S2ΔL2.
因为理想流体是不可压缩的,所以有
ΔV1=ΔV2=ΔV
作用于左端的力F1=p1S2对流体做的功为
W1=F1ΔL1
=p1·S1ΔL1=p1ΔV
贝努利方程
静压能与动能的转化公式:1/2*u^2=ΔP/ρ
ΔP=P2-P1;P1=0.1MPa(大气压)
ρ为水的密度1000kg/m3。
u为速度,m/s
ΔP=1/2*ρ*u^2
P2=0.1*1000000+1/2*ρ*u^2
(Pa)
关于量纲:
[kg/m^3*(m/s)^2]=[kg/(m*s^2)]
记得牛顿第二定律F=m*a吗?N=kg*m/s^2,代入上式
=N/m^2=Pa
作用于右端的力F2=p2S2,它对流体做负功(因为右边对这段流体的作用力向左,而这段流体的位移向右),所做的功为
W2=-F2ΔL2=-p2S2ΔL2=-p2ΔV
两侧外力对所选研究液体所做的总功为
W=W1+W2=(p1-p2)ΔV
又因为我们研究的是理想流体的定常流动,流体的密度ρ和各点的流速V没有改变,所以研究对象(初态是a1到a2之间的流体,末态是b1到b2之间的流体)的动能和重力势能都没有改变.这样,机械能的改变就等于流出的那部分流体的机械能减去流入的那部分流体的机械能,即
E2-E1=ρ()ΔV+ρg(h2-h1)ΔV
又理想流体没有粘滞性,流体在流动中机械能不会转化为内能
∴W=E2-E1
(p1-p2)ΔV=ρ(-))ΔV+ρg(h2-h1)ΔV
整理后得:整理后得:
又a1和a2是在流体中任取的,所以上式可表述为
上述两式就是伯努利方程.
当流体水平流动时,或者高度的影响不显著时,伯努利方程可表达为
该式的含义是:在流体的流动中,压强跟流速有关,流速V大的地方压强p小,流速V小的地方压强p大.
展开全部
伯努利方程
开放分类:
数学、流体、流体力学、伯努利、方程
伯努利方程(Bernoulli
equation)
理想正压流体在有势彻体力作用下作定常运动时,运动方程(即欧拉方程)沿流线积分而得到的表达运动流体机械能守恒的方程。因著名的瑞士科学家D.伯努利于1738年提出而得名。对于重力场中的不可压缩均质流体
,方程为
p+ρgz+(1/2)*ρv^2=C
式中p、ρ、v分别为流体的压强、密度和速度;z
为铅垂高度;g为重力加速度。
上式各项分别表示单位体积流体的压力能
p、重力势能ρg
z和动能(1/2)*ρv
^2,在沿流线运动过程中,总和保持不变,即总能量守恒。但各流线之间总能量(即上式中的常量值)可能不同。对于气体,可忽略重力,方程简化为p+
(1/2)*ρv
^2=常量(p0),各项分别称为静压
、动压和总压。显然
,流动中速度增大,压强就减小;速度减小,压强就增大;速度降为零,压强就达到最大(理论上应等于总压)。飞机机翼产生举力,就在于下翼面速度低而压强大,上翼面速度高而压强小,因而合力向上。据此方程,测量流体的总压、静压即可求得速度,成为皮托管测速的原理。在无旋流动中,也可利用无旋条件积分欧拉方程而得到相同的结果但涵义不同,此时公式中的常量在全流场不变,表示各流线上流体有相同的总能量,方程适用于全流场任意两点之间。在粘性流动中,粘性摩擦力消耗机械能而产生热,机械能不守恒,推广使用伯努利方程时,应加进机械能损失项。
图为验证伯努利方程的空气动力实验。
开放分类:
数学、流体、流体力学、伯努利、方程
伯努利方程(Bernoulli
equation)
理想正压流体在有势彻体力作用下作定常运动时,运动方程(即欧拉方程)沿流线积分而得到的表达运动流体机械能守恒的方程。因著名的瑞士科学家D.伯努利于1738年提出而得名。对于重力场中的不可压缩均质流体
,方程为
p+ρgz+(1/2)*ρv^2=C
式中p、ρ、v分别为流体的压强、密度和速度;z
为铅垂高度;g为重力加速度。
上式各项分别表示单位体积流体的压力能
p、重力势能ρg
z和动能(1/2)*ρv
^2,在沿流线运动过程中,总和保持不变,即总能量守恒。但各流线之间总能量(即上式中的常量值)可能不同。对于气体,可忽略重力,方程简化为p+
(1/2)*ρv
^2=常量(p0),各项分别称为静压
、动压和总压。显然
,流动中速度增大,压强就减小;速度减小,压强就增大;速度降为零,压强就达到最大(理论上应等于总压)。飞机机翼产生举力,就在于下翼面速度低而压强大,上翼面速度高而压强小,因而合力向上。据此方程,测量流体的总压、静压即可求得速度,成为皮托管测速的原理。在无旋流动中,也可利用无旋条件积分欧拉方程而得到相同的结果但涵义不同,此时公式中的常量在全流场不变,表示各流线上流体有相同的总能量,方程适用于全流场任意两点之间。在粘性流动中,粘性摩擦力消耗机械能而产生热,机械能不守恒,推广使用伯努利方程时,应加进机械能损失项。
图为验证伯努利方程的空气动力实验。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询