三角形的中位线的判定方法都有什么

 我来答
逢秀英耿胭
2020-03-25 · TA获得超过3.8万个赞
知道大有可为答主
回答量:1.4万
采纳率:27%
帮助的人:715万
展开全部
如图,已知△ABC中,D,E分别是AB,AC两边中点。
求证DE平行且等于BC/2
法一:
过C作AB的平行线交DE的延长线于F点。
∵CF‖AD
∴∠A=∠ACF
∵AE=CE、∠AED=∠CEF
∴△ADE≌△CFE
∴DE=EF=DF/2、AD=CF
∵AD=BD
∴BD=CF
∴BCFD是平行四边形
∴DF‖BC且DF=BC
∴DE=BC/2
∴三角形的中位线定理成立.
法二:利用相似证
∵D,E分别是AB,AC两边中点
∴AD=AB/2 AE=AC/2
∴AD/AE=AB/AC
又∵∠A=∠A
∴△ADE∽△ABC
∴DE/BC=AD/AB=1/2
∴∠ADE=∠ABC
∴DF‖BC且DE=BC/2
法三:坐标法:
设三角形三点分别为(x1,y1),(x2,y2),(x3,y3)
则一条边长为 :根号(x2-x1)^2+(y2-y1)^2
另两边中点为((x1+x3)/2,(y1+y3)/2),和((x2+x3)/2,(y2+y3)/2)
这两中点距离为:根号((x2+x3)/2-(x1+x3)/2)^2+((y2+y3)/2-(y1+y3)/2)^2
最后化简时将x3,y3削掉正好中位线长为其对应边长的一半
相似学了吗?
武义菲亚伏电子有限公司
2023-06-12 广告
定理:三角形的中位线平行于三角形的第三边,并且等于第三边的一半 特点 三角形中位线性质:三角形的中位线平行于第三边并且等于第三边的一半. 三角形三条中位线所构成的三角形是原三角形的相似形。 若在一个三角形中,一条线段是平行于一条边,且等于第... 点击进入详情页
本回答由武义菲亚伏电子有限公司提供
定耕顺段寅
2019-05-03 · TA获得超过3.6万个赞
知道大有可为答主
回答量:1.4万
采纳率:30%
帮助的人:885万
展开全部
三角形的中位线的判定方法如下:
1、过三角形的两边中点的线段,是三角形的中位线。
2、过三角形的一边中点且平行于另一边的线段,是三角形的中位线。
3、平行且等于三角形一边长度的一半的线段,是三角形的中位线。
连接三角形两边中点的线段叫做三角形的中位线,三角形的中位线平行于第三边并且等于第三边边长的一半。连接梯形两腰中点的线段叫做梯形的中位线,梯形的中位线平行于两底,并且等于两底和的一半。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
剧秋英隐卿
2019-11-22 · TA获得超过3.6万个赞
知道大有可为答主
回答量:1.2万
采纳率:28%
帮助的人:1061万
展开全部
如图,已知△abc中,d,e分别是ab,ac两边中点。
求证de平行且等于bc/2
法一:
过c作ab的平行线交de的延长线于f点。
∵cf‖ad
∴∠a=∠acf
∵ae=ce、∠aed=∠cef
∴△ade≌△cfe
∴de=ef=df/2、ad=cf
∵ad=bd
∴bd=cf
∴bcfd是平行四边形
∴df‖bc且df=bc
∴de=bc/2
∴三角形的中位线定理成立.
法二:利用相似证
∵d,e分别是ab,ac两边中点
∴ad=ab/2ae=ac/2
∴ad/ae=ab/ac
又∵∠a=∠a
∴△ade∽△abc
∴de/bc=ad/ab=1/2
∴∠ade=∠abc
∴df‖bc且de=bc/2
法三:坐标法:
设三角形三点分别为(x1,y1),(x2,y2),(x3,y3)
则一条边长为:根号(x2-x1)^2+(y2-y1)^2
另两边中点为((x1+x3)/2,(y1+y3)/2),和((x2+x3)/2,(y2+y3)/2)
这两中点距离为:根号((x2+x3)/2-(x1+x3)/2)^2+((y2+y3)/2-(y1+y3)/2)^2
最后化简时将x3,y3削掉正好中位线长为其对应边长的一半
相似学了吗?
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(1)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式