证明函数f(x)=x³+x在R上是增函数

 我来答
竺萌鹿德
2020-03-27 · TA获得超过3623个赞
知道大有可为答主
回答量:3126
采纳率:25%
帮助的人:179万
展开全部
证明:
设有任意的x1<x2
F(x2)-F(x1)
=
x2^3
-x1^3
+
x2
-
x1
=
(x2-x1)(x2^2
+
x1x2
+
x1^2)
+
(x2-x1)
>0
即 F(x2)
>
F(x1)
因此F(X)是增函数。
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式