二次函数实根分布问题

不是简单的判定,最好写出这个的通法(公式):一根在(m,n)之间,一根在(a,b)之间(m,n,a,b是实数)如果不行就写出类似以下问题的通法:例如:一根大/小于m;一根... 不是简单的判定,最好写出这个的通法(公式):
一根在(m,n)之间,一根在(a,b)之间(m,n,a,b是实数)
如果不行就写出类似以下问题的通法:
例如:一根大/小于m;
一根大/小于m,一根小/大与n;
两根都大/小于m;
一根在(m,n)之间;
两根都在(m,n)之间;等等。。。。。。。
如果两根都在(m,n)之间呢?
或者两根都大于m
展开
shawhom
高粉答主

2008-11-17 · 喜欢数学,玩点控制,就这点爱好!
shawhom
采纳数:11718 获赞数:28026

向TA提问 私信TA
展开全部
设函数为y=f(x)
一根在(m,n)之间,一根在(a,b)之间
则有
f(m)*f(n)<0
f(a)*f(b)<0
这个在高等数学里叫做介值定理。在初等数学里也可以用,且很实用!!

同理
一根大/小于m,则f(m)</>0

一根大/小于m,一根小/大与n;
f(m)</>0,f(m)>/<0

两根都大/小于m
f(m)</>0

一根在(m,n)之间;
f(m)*f(n)<0

有其他问题可继续提问
桑教主
2008-11-19 · TA获得超过522个赞
知道小有建树答主
回答量:128
采纳率:0%
帮助的人:106万
展开全部
既然函数是二次函数,只需要看f(m)与f(n)是否逆号,f(a)与f(b)是否逆号,无论二次项系数大于还是小于0,这个方法都成立,当然前提必须是判别式大于0,否则这个方法没有用,你可以画图看看,如果f(m)的函数值在x轴上方,那么f(n)的函数值一定在x轴下方,同理f(a)与f(b)也是这样,当然如果f(m)的函数值在x轴下方,那么f(n)的函数值一定在x轴上方,这是必然成立的,不能用韦达定理单纯的看待问题
如果两根都在(m,n)之间,那么f(m)f(n)必然同号
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式