已知四棱锥P-ABCD,底面ABCD是角A=60度,边长为a的菱形,有PD垂直底ABCD,PD=CD,点M,N分别是棱AD,PC的中点

 我来答
公叔秀荣费茶
2020-02-11 · TA获得超过3.7万个赞
知道大有可为答主
回答量:1.2万
采纳率:27%
帮助的人:1123万
展开全部
(1)证明:取PB中点Q,连结MQ、NQ,因为
M、N分别是棱AD、PC中点,所以
QN//BC//MD,且QN=MD,于是DN//MQ.
.…
…………………6分
(2)
又因为底面ABCD是
、边长为
的菱形,且M为AD中点,
所以
.又
所以
.
………………10分
(3)因为M是AD中点,所以点A与D到平面PMB等距离.
过点D作
于H,由(2)平面PMB
平面PAD,所以
.
故DH是点D到平面PMB的距离.
所以点A到平面PMB的距离为
.………14分
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式