已知函数f(x)=(sinx+cosx)²+2cos²x 1.
2个回答
展开全部
已知函数f(x)=(sinx+cosx)²+2cos²x;1。求f(x)的最大值及最大值时自变量x的集合。2。求函数的单调区间
解:1。f(x)=(sinx+cosx)²+2cos²x=1+sin2x+(1+cos2x)=(sin2x+cos2x)+2
=(√2)sin(2x+π/4)+2;
当2x+π/4=π/2+2kπ,即x=(1/2)[π/2-π/4+2kπ]=kπ+π/8时f(x)获得最大值3;
2。由-π/2+2kπ≦2x+π/4≦π/2+2kπ,得单增区间为:-3π/8+kπ≦x≦π/8+kπ;
由π/2+2kπ≦2x+π/4≦3π/2+2kπ,得单减区间为:π/8+kπ≦x≦5π/8+kπ;k∈z;
解:1。f(x)=(sinx+cosx)²+2cos²x=1+sin2x+(1+cos2x)=(sin2x+cos2x)+2
=(√2)sin(2x+π/4)+2;
当2x+π/4=π/2+2kπ,即x=(1/2)[π/2-π/4+2kπ]=kπ+π/8时f(x)获得最大值3;
2。由-π/2+2kπ≦2x+π/4≦π/2+2kπ,得单增区间为:-3π/8+kπ≦x≦π/8+kπ;
由π/2+2kπ≦2x+π/4≦3π/2+2kπ,得单减区间为:π/8+kπ≦x≦5π/8+kπ;k∈z;
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
函数f(x)=(sinx+cosx)²+2cos²x
=1+2sinxcosx+(2cos²x-1)+1
=sin2x+cos2x+2
=根号2sin(2x+π/4)+2
当2x+Pai/4=2kPai+Pai/2,即有x=kPai+Pai/8时有最大值是:根号2+2
(2)
2kπ-π/2<=2x+π/4<=2kπ+π/2
kπ-3π/8<=x<=kπ+π/8
函数f(x)的单调递增区间
【kπ-3π/8,kπ+π/8】
k∈Z
=1+2sinxcosx+(2cos²x-1)+1
=sin2x+cos2x+2
=根号2sin(2x+π/4)+2
当2x+Pai/4=2kPai+Pai/2,即有x=kPai+Pai/8时有最大值是:根号2+2
(2)
2kπ-π/2<=2x+π/4<=2kπ+π/2
kπ-3π/8<=x<=kπ+π/8
函数f(x)的单调递增区间
【kπ-3π/8,kπ+π/8】
k∈Z
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询