设函数f(x)=lnx+ln(2-x)+ax(a>0),若f(x)在(0,1]最大值为1/2,求a。

 我来答
山博厚嵇昭
2020-03-02 · TA获得超过2.9万个赞
知道大有可为答主
回答量:1.1万
采纳率:34%
帮助的人:728万
展开全部
解:
f(x)=lnx+ln(2-x)+ax
=lnx(2-x)+ax
=ln[1+(2x-x^2-1)]+ax
=ln[1-(x-1)^2]+ax
显然,f(x)在定义域内为增函数
所以,当x=1时,f(x)取最大值1/2
所以f(x)=ln1+ln(2-1)+a=1/2
a=1/2
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式