初一合并同类项的计算题100道带答案

100道100道100道【重要的事情说三遍】拜托了... 100道 100道 100道【重要的事情说三遍】拜托了 展开
 我来答
蓬群钮曼文
2020-02-26 · TA获得超过3808个赞
知道大有可为答主
回答量:3164
采纳率:28%
帮助的人:173万
展开全部
(1)(3x-5y)-(6x+7y)+(9x-2y) (2)2a-[3b-5a-(3a-5b)] (3)(6m2n-5mn2)-6(m2n-mn2) (1)(3x-5y)-(6x+7y)+(9x-2y) =3x-5y-6x-7y+9x-2y
(正确去掉括号) =(3-6+9)x+(-5-7-2)y
合并同类项) =6x-14y (2)2a-[3b-5a-(3a-5b)]
(应按小括号,中括号,大括号的顺序逐层去括号) =2a-[3b-5a-3a+5b]
(先去小括号) =2a-[-8a+8b]
(及时合并同类项) =2a+8a-8b
(去中括号) =10a-8b (3)(6m2n-5mn2)-6(m2n-mn2)
(注意第二个括号前有因数6) =6m2n-5mn2-2m2n+3mn2
(去括号与分配律同时进行) =(6-2)m2n+(-5+3)mn2
(合并同类项) =4m2n-2mn2 例2.已知:A=3x2-4xy+2y2,B=x2+2xy-5y2 求:(1)A+B
(2)A-B
(3)若2A-B+C=0,求C.(1)A+B=(3x2-4xy+2y2)+(x2+2xy-5y2) =3x2-4xy+2y2+x2+2xy-5y2(去括号) =(3+1)x2+(-4+2)xy+(2-5)y2(合并同类项) =4x2-2xy-3y2(按x的降幂排列) (2)A-B=(3x2-4xy+2y2)-(x2+2xy-5y2) =3x2-4xy+2y2-x2-2xy+5y2
(去括号) =(3-1)x2+(-4-2)xy+(2+5)y2
(合并同类项) =2x2-6xy+7y2
(按x的降幂排列) (3)∵2A-B+C=0 ∴C=-2A+B =-2(3x2-4xy+2y2)+(x2+2xy-5y2) =-6x2+8xy-4y2+x2+2xy-5y2
(去括号,注意使用分配律) =(-6+1)x2+(8+2)xy+(-4-5)y2
(合并同类项) =-5x2+10xy-9y2
(按x的降幂排列) 例3.计算:(1)m2+(-mn)-n2+(-m2)-(-0.5n2) (2)2(4an+2-an)-3an+(an+1-2an+1)-(8an+2+3an) (3)化简:(x-y)2-(x-y)2-[(x-y)2-(x-y)2] (1)m2+(-mn)-n2+(-m2)-(-0.5n2) =m2-mn-n2-m2+n2
(去括号) =(-)m2-mn+(-+)n2
(合并同类项) =-m2-mn-n2
(按m的降幂排列) (2)2(4an+2-an)-3an+(an+1-2an+1)-(8an+2+3an) =8an+2-2an-3an-an+1-8an+2-3an
(去括号) =0+(-2-3-3)an-an+1
(合并同类项) =-an+1-8an (3)(x-y)2-(x-y)2-[(x-y)2-(x-y)2]
[把(x-y)2看作一个整体] =(x-y)2-(x-y)2-(x-y)2+(x-y)2
(去掉中括号) =(1--+)(x-y)2
(“合并同类项”) =(x-y)2 例4求3x2-2{x-5[x-3(x-2x2)-3(x2-2x)]-(x-1)}的值,其中x=2.分析:由于已知所给的式子比较复杂,一般情况都应先化简整式,然后再代入所给数值x=-2,去括号时要注意符号,并且及时合并同类项,使运算简便.原式=3x2-2{x-5[x-3x+6x2-3x2+6x]-x+1}
(去小括号) =3x2-2{x-5[3x2+4x]-x+1}
(及时合并同类项) =3x2-2{x-15x2-20x-x+1}
(去中括号) =3x2-2{-15x2-20x+1}
(化简大括号里的式子) =3x2+30x2+40x-2
(去掉大括号) =33x2+40x-2 当x=-2时,原式=33×(-2)2+40×(-2)-2=132-80-2=50 例5.若16x3m-1y5和-x5y2n+1是同类项,求3m+2n的值.∵16x3m-1y5和-x5y2n+1是同类项 ∴对应x,y的次数应分别相等 ∴3m-1=5且2n+1=5 ∴m=2且n=2 ∴3m+2n=6+4=10 本题考察我们对同类项的概念的理解.例6.已知x+y=6,xy=-4,求:(5x-4y-3xy)-(8x-y+2xy)的值.(5x-4y-3xy)-(8x-y+2xy) =5x-4y-3xy-8x+y-2xy =-3x-3y-5xy =-3(x+y)-5xy ∵x+y=6,xy=-4 ∴原式=-3×6-5×(-4)=-18+20=2 说明:本题化简后,发现结果可以写成-3(x+y)-5xy的形式,因而可以把x+y,xy的值代入原式即可求得最后结果,而没有必要求出x,y的值,这种思考问题的思想方法叫做整体代换,希望同学们在学习过程中,注意使用.
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式