这道高数极限题怎么做?
2个回答
展开全部
用等价无穷小
1-cosx~1/2x^2
原式=x^2/(1/2x^2)=2
1-cosx~1/2x^2
原式=x^2/(1/2x^2)=2
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
x→0时,sinx∽x
方法一:
0/0型,运用洛必达法则
lim(x→0) x²/(1–cosx)
=lim(x→0) 2x/sinx
=2
方法二:
lim(x→0) x²/(1–cosx)
=lim(x→0) x²/[2sin²(x/2)]
=lim(x→0) x²/[2·(x/2)²]
=2
方法三:
在x=0处,cosx带皮亚诺余项的泰勒展开为
cosx=1–x²/2+x^4/4!+o(x^4)
=1–x²/2+o(x²)
lim(x→0) x²/(1–cosx)
=lim(x→0) x²/[1–(1–x²/2+o(x²))]
=lim(x→0) 1/(1/2)
=2
方法一:
0/0型,运用洛必达法则
lim(x→0) x²/(1–cosx)
=lim(x→0) 2x/sinx
=2
方法二:
lim(x→0) x²/(1–cosx)
=lim(x→0) x²/[2sin²(x/2)]
=lim(x→0) x²/[2·(x/2)²]
=2
方法三:
在x=0处,cosx带皮亚诺余项的泰勒展开为
cosx=1–x²/2+x^4/4!+o(x^4)
=1–x²/2+o(x²)
lim(x→0) x²/(1–cosx)
=lim(x→0) x²/[1–(1–x²/2+o(x²))]
=lim(x→0) 1/(1/2)
=2
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询