用matlab求非线性规划问题的最优解
求M已知M=21.6×√(5^2+〖(8-z)〗^2)+7.2×(√(x^2+〖(5-x)〗^2)+y+√(〖(15-x)〗^2+〖(z-x)〗^2))且{0≤x≤150...
求M
已知M=21.6×√(5^2+〖(8-z)〗^2 )+7.2×(√(x^2+〖(5-x)〗^2 )+y+√(〖(15-x)〗^2+〖(z-x)〗^2 ))
且{0≤x≤15
0≤y≤5
y≤z≤8
求用matlab编程求出M的最小值 展开
已知M=21.6×√(5^2+〖(8-z)〗^2 )+7.2×(√(x^2+〖(5-x)〗^2 )+y+√(〖(15-x)〗^2+〖(z-x)〗^2 ))
且{0≤x≤15
0≤y≤5
y≤z≤8
求用matlab编程求出M的最小值 展开
展开全部
题主给出的非线性规划问题,其最优解可以用matlab的fmincon函数求解,求解方法如下:
1、根据条件,确定x、y、z的上下限
lb=[0,0,5];ub=[15,5,8];
2、自定义目标函数,fmincon_fun(k),即
x=k(1);y=k(2);z=k(3);
m=21.6*sqrt(5^2+(8-z)^2 )+7.2*(sqrt(x^2+(5-x)^2 )+y+sqrt((15-x)^2+(z-x)^2 ));
3、使用fmincon函数求解,其M的最小值
[k,fval] = fmincon(@(k) fmincon_fun(k),k0,[],[],[],[],lb,ub)
其中:x=k(1);y=k(2);z=k(3);ymin=fval
4、按上述方法,编程运行可以得到如下结果。
光点科技
2023-08-15 广告
2023-08-15 广告
通常情况下,我们会按照结构模型把系统产生的数据分为三种类型:结构化数据、半结构化数据和非结构化数据。结构化数据,即行数据,是存储在数据库里,可以用二维表结构来逻辑表达实现的数据。最常见的就是数字数据和文本数据,它们可以某种标准格式存在于文件...
点击进入详情页
本回答由光点科技提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询