x4+y4+(x+y)4因式分解
1个回答
展开全部
x^4+y^4+(x+y)^4
=(x^2+y^2)^2-2x^2y^2+(x+y)^4
=[(x+y)^2-2xy]^2-2x^2y^2+(x+y)^4
=[(x+y)^2]^2-4xy(x+y)^2+4x^2y^2-2x^2y^2+(x+y)^4
=2(x+y)^4-4xy(x+y)^2+2x^2y^2
=2[(x+y)^4-2xy(x+y)^2+(xy)^2]
=2[(x+y)^2-xy]^2
=2(x^2+xy+y^2)^2
=(x^2+y^2)^2-2x^2y^2+(x+y)^4
=[(x+y)^2-2xy]^2-2x^2y^2+(x+y)^4
=[(x+y)^2]^2-4xy(x+y)^2+4x^2y^2-2x^2y^2+(x+y)^4
=2(x+y)^4-4xy(x+y)^2+2x^2y^2
=2[(x+y)^4-2xy(x+y)^2+(xy)^2]
=2[(x+y)^2-xy]^2
=2(x^2+xy+y^2)^2
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询