设函数,f(x)=sin(2ωx+φ)在(ω>0,-π<φ<0],函数y=f(x...

设函数,f(x)=sin(2ωx+φ)在(ω>0,-π<φ<0],函数y=f(x)的相邻两条对称轴间距离为π,且函数的图象的一个对称中心为(-π2,0).(Ⅰ)求函数y=... 设函数,f(x)=sin(2ωx+φ)在(ω>0,-π<φ<0],函数y=f(x)的相邻两条对称轴间距离为π,且函数的图象的一个对称中心为(-π2,0). (Ⅰ)求函数y=f(x)的解析式; (Ⅱ)在△ABC中,若f(A)=-255,f(B)=-31010,求:角C的大小. 展开
 我来答
畅家禾晶茹
2020-05-02 · TA获得超过3698个赞
知道大有可为答主
回答量:3082
采纳率:29%
帮助的人:210万
展开全部
解:(Ⅰ)∵函数y=f(x)的相邻两条对称轴间距离为π,
∴T=2π2ω=2π,ω=12,

函数的图象的一个对称中心为(-π2,0)
∴sin(-π2+φ)=0
而-π<φ<0
∴φ=-π2.
所以函数y=f(x)的解析式为y=sin(x-π2)=-cosx
(Ⅱ)由(Ⅰ)可知:cosA=255,cosB=31010,又A,B∈(0,π),
所以,sinA=55,sinB=1010,
cosC=cos[π-A-B]=cos(A+B)=-(cosAcosB-sinAsinB)
=-(255×31010-55×1010)=-22,
又C∈(0,π),∴C=3π4.
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式