已知二次函数f(x)=ax2+bx+c(a,b,c∈R),f(-2)=f(0)=...
已知二次函数f(x)=ax2+bx+c(a,b,c∈R),f(-2)=f(0)=0,f(x)的最小值为-1.(1)求函数f(x)的解析式;(2)设g(x)=f(-x)-λ...
已知二次函数f(x)=ax2+bx+c(a,b,c∈R),f(-2)=f(0)=0,f(x)的最小值为-1. (1)求函数f(x)的解析式; (2)设g(x)=f(-x)-λf(x)+1,若g(x)在[-1,1]上是减函数,求实数λ的取值范围; (3)设函数h(x)=log2[p-f(x)],若此函数在定义域范围内不存在零点,求实数p的取值范围.
展开
1个回答
展开全部
解:(1)设f(x)=ax(x+2),又a>0,f(-1)=-1,
∴a=1,
∴f(x)=x2+2x.(4分)
(2)∵g(x)=f(-x)-λf(x)+1,
∴g(x)=(1-λ)x2-2(1+λ)x+1,
①当λ=1时,g(x)=-4x=1在[-1,1]上是减函数,满足要求;
②当λ≠1时,对称轴方程为:x=1+λ1-λ.
ⅰ)当λ<1时,1-λ>0,所以1+λ1-λ≥1,解得0≤λ<1;
ⅱ)当λ>1时,1-λ<0,所以1+λ1-λ≤-1,解得λ>1.
综上,λ≥0.(7分)
(3)函数h(x)=log2[p-f(x)]在定义域内不存在零点,必须且只须有
p-f(x)>0有解,且p-f(x)=1无解.
即[p-f(x)]max>0,且1不在[p-f(x)]的值域内.
f(x)的最小值为-1,
∴函数y=p-f(x)的值域为(-∞,p+1].
∴p+1>01>p+1,解得-1<p<0.
∴p的取值范围为(-1,0).(10分)
∴a=1,
∴f(x)=x2+2x.(4分)
(2)∵g(x)=f(-x)-λf(x)+1,
∴g(x)=(1-λ)x2-2(1+λ)x+1,
①当λ=1时,g(x)=-4x=1在[-1,1]上是减函数,满足要求;
②当λ≠1时,对称轴方程为:x=1+λ1-λ.
ⅰ)当λ<1时,1-λ>0,所以1+λ1-λ≥1,解得0≤λ<1;
ⅱ)当λ>1时,1-λ<0,所以1+λ1-λ≤-1,解得λ>1.
综上,λ≥0.(7分)
(3)函数h(x)=log2[p-f(x)]在定义域内不存在零点,必须且只须有
p-f(x)>0有解,且p-f(x)=1无解.
即[p-f(x)]max>0,且1不在[p-f(x)]的值域内.
f(x)的最小值为-1,
∴函数y=p-f(x)的值域为(-∞,p+1].
∴p+1>01>p+1,解得-1<p<0.
∴p的取值范围为(-1,0).(10分)
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询