根据绝对值在数轴上的几何意义,解决问题:
根据绝对值在数轴上的几何意义,解决问题:当x的取值范围是--时,x-1的绝对值+x+4的绝对值有最小值是...
根据绝对值在数轴上的几何意义,解决问题:当x的取值范围是--时,x-1的绝对值+x+4的绝对值有最小值是
展开
3个回答
展开全部
当x的取值范围是(-4,1)时,x-1的绝对值+x+4的绝对值有最小值是5。
解析:x的取值范围是(-4,1)时,x-1的绝对值+x+4的绝对值的意义是数轴上表示x的点到表示1,-4点的距离的和为5。(|b-a|或|a-b|表示数轴上表示a的点和表示b的点的距离。)
绝对值的性质:
在数学中,绝对值或模数| x | 的非负值,而不考虑其符号,即|x | = x表示正x,| x | = -x表示负x(在这种情况下-x为正),| 0 | = 0。例如,3的绝对值为3,-3的绝对值也为3。数字的绝对值可以被认为是与零的距离。
实数的绝对值的泛化发生在各种各样的数学设置中,例如复数、四元数、有序环、字段和向量空间定义绝对值。绝对值与各种数学和物理环境中的大小,距离和范数的概念密切相关。
上海华然企业咨询
2024-10-28 广告
2024-10-28 广告
作为上海华然企业咨询有限公司的一员,我们深知大模型测试对于企业数字化转型与智能决策的重要性。在应对此类测试时,我们注重数据的精准性、算法的先进性及模型的适用性,确保大模型能够精准捕捉市场动态,高效分析企业数据,为管理层提供科学、前瞻的决策支...
点击进入详情页
本回答由上海华然企业咨询提供
展开全部
|a|的几何意义是:数轴上表示a的点到原点的距离;|a-b|的几何意义是:数轴上表示数a、b的两点的距离.对于某些问题用绝对值的几何意义来解,直观简捷,事半功倍.
一、绝对值之和求最小值
题型一 两个绝对值相加求最小值【方法分析】
【总结归纳】
绝对值的最值问题多以选填题的形式考察,上述绝对值几何意义的方法能迅速求解,但此法不能作为大题的解题步骤,所以一旦要求写大题步骤,只能使用零点分段法化简,分别求出每一段的取值范围,最后得到最值.
题型二 多个绝对值相加求最小值
二、绝对值之差求最值
【方法分析】
至于当x满足什么条件时分别取最大、最小值.则可以画数轴分析或把绝对值展开计算.
绝对值有两个意义:
(1)代数意义:非负数(包括零)的绝对值是它本身,负数的绝对值是它的相反数。即|a|=a(当a≥0) , |a|=-a (当a<0)
(2)几何意义:一个数的绝对值等于数轴上表示它的点到原点的距离。
灵活应用绝对值的基本性质:
(1)|a|≥0;(2)|ab|=|a|·|b|;(3)|a/b|=|a|/|b|(b≠0)(4)|a|-|b|≤ |a+b|≤|a|+|b|;(5)|a|-|b|≤ |a-b|≤|a|+|b|;
点A、B在数轴上分别对应的数为a、b,则A、B两点间的距离表示为|AB|=|a-b|,利用绝对值的距离公式找最小值,是考试中的一个难点。现在跟随老师的脚步,从特色到一般出发,一起探究做此题的套路吧,这一类题就都可以解决啦!
【问题提出】|a﹣1|+|a﹣2|+|a﹣3|+…+|a﹣2019|最小值是多少?
【阅读理解】
为了解决这个问题,我们先从最简单的情况入手.|a|的几何意义是a这个数在数轴上对应的点到原点的距离.那么|a﹣1|可以看做a这个数在数轴上对应的点到1的距离;|a﹣1|+|a﹣2|就可以看作a这个数在数轴上对应的点到1和2两个点的距离之和.下面我们结合数轴研究|a﹣1|+|a﹣2|的最小值.
我们先看a表示的点可能的3种情况,如图所示:
(1)如图①,a在1的左边,从图中很明显可以看出a到1和2的距离之和大于1.
(2)如图②,a在1和2之间(包括在1,2上),可以看出a到1和2的距离之和等于1.
(3)如图③,a在2的右边,从图中很明显可以看出a到1和2的距离之和大于1.
【问题解决】
(1)|a﹣2|+|a﹣5|的几何意义是______.请你结合数轴探究:|a﹣2|+|a﹣5|的最小值是_____.
(2)|a﹣1|+|a﹣2|+|a﹣3|的几何意义是_____.请你结合数轴探究:|a﹣1|+|a﹣2|+|a﹣3|的最小值是 ______,并在图④的数轴上描出得到最小值时a所在的位置,由此可以得出a为 ______.
(3)求出|a﹣1|+|a﹣2|+|a﹣3|+|a﹣4|+|a﹣5|的最小值.
(4)求出|a﹣1|+|a﹣2|+|a﹣3|+…+|a﹣2019|的最小值.
一、绝对值之和求最小值
题型一 两个绝对值相加求最小值【方法分析】
【总结归纳】
绝对值的最值问题多以选填题的形式考察,上述绝对值几何意义的方法能迅速求解,但此法不能作为大题的解题步骤,所以一旦要求写大题步骤,只能使用零点分段法化简,分别求出每一段的取值范围,最后得到最值.
题型二 多个绝对值相加求最小值
二、绝对值之差求最值
【方法分析】
至于当x满足什么条件时分别取最大、最小值.则可以画数轴分析或把绝对值展开计算.
绝对值有两个意义:
(1)代数意义:非负数(包括零)的绝对值是它本身,负数的绝对值是它的相反数。即|a|=a(当a≥0) , |a|=-a (当a<0)
(2)几何意义:一个数的绝对值等于数轴上表示它的点到原点的距离。
灵活应用绝对值的基本性质:
(1)|a|≥0;(2)|ab|=|a|·|b|;(3)|a/b|=|a|/|b|(b≠0)(4)|a|-|b|≤ |a+b|≤|a|+|b|;(5)|a|-|b|≤ |a-b|≤|a|+|b|;
点A、B在数轴上分别对应的数为a、b,则A、B两点间的距离表示为|AB|=|a-b|,利用绝对值的距离公式找最小值,是考试中的一个难点。现在跟随老师的脚步,从特色到一般出发,一起探究做此题的套路吧,这一类题就都可以解决啦!
【问题提出】|a﹣1|+|a﹣2|+|a﹣3|+…+|a﹣2019|最小值是多少?
【阅读理解】
为了解决这个问题,我们先从最简单的情况入手.|a|的几何意义是a这个数在数轴上对应的点到原点的距离.那么|a﹣1|可以看做a这个数在数轴上对应的点到1的距离;|a﹣1|+|a﹣2|就可以看作a这个数在数轴上对应的点到1和2两个点的距离之和.下面我们结合数轴研究|a﹣1|+|a﹣2|的最小值.
我们先看a表示的点可能的3种情况,如图所示:
(1)如图①,a在1的左边,从图中很明显可以看出a到1和2的距离之和大于1.
(2)如图②,a在1和2之间(包括在1,2上),可以看出a到1和2的距离之和等于1.
(3)如图③,a在2的右边,从图中很明显可以看出a到1和2的距离之和大于1.
【问题解决】
(1)|a﹣2|+|a﹣5|的几何意义是______.请你结合数轴探究:|a﹣2|+|a﹣5|的最小值是_____.
(2)|a﹣1|+|a﹣2|+|a﹣3|的几何意义是_____.请你结合数轴探究:|a﹣1|+|a﹣2|+|a﹣3|的最小值是 ______,并在图④的数轴上描出得到最小值时a所在的位置,由此可以得出a为 ______.
(3)求出|a﹣1|+|a﹣2|+|a﹣3|+|a﹣4|+|a﹣5|的最小值.
(4)求出|a﹣1|+|a﹣2|+|a﹣3|+…+|a﹣2019|的最小值.
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
当x的取值范围是(-4,1)时,x-1的绝对值+x+4的绝对值有最小值是5
说明:x的取值范围是(-4,1)时,x-1的绝对值+x+4的绝对值的意义是数轴上表示x的点到表示1,-4点的距离的和为5。
说明:x的取值范围是(-4,1)时,x-1的绝对值+x+4的绝对值的意义是数轴上表示x的点到表示1,-4点的距离的和为5。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询