展开全部
n/(n^2+n^2)< 1/(1+n^2)+1/(2^2+n^2)+...+1/(n^2+n^2) < n/(1+n^2)
lim(n->∞) n/(n^2+n^2)= lim(n->∞) n/(1+n^2) =0
=>
lim(n->∞) [ 1/(1+n^2)+1/(2^2+n^2)+...+1/(n^2+n^2) ] =0
lim(n->∞) n/(n^2+n^2)= lim(n->∞) n/(1+n^2) =0
=>
lim(n->∞) [ 1/(1+n^2)+1/(2^2+n^2)+...+1/(n^2+n^2) ] =0
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询