一道数学归纳法证明题
1个回答
展开全部
dwtydwtyky的做法悲剧了~
“两式相减”的时候,那是不等式啊怎么能小的减小的,大的减大的呢??
我有一种做法,需要写一会儿……
n=1显然
n=k时1+k/2<=1+1/2+1/3+...+1/(2^k)<=1/2+k
(1)
n=k+1时
要证
1+(k+1)/2<=1+1/2+1/3+...+1/(2^k)+……+1/(2^(k+1))<=1/2+k+1
(2)
先证左半个不等式:
(1)的左半个同时加1/2:
1+(k+1)/2<=1+1/2+1/3+...+1/(2^k)+1/2
与待证的(2)左半个相比,要证:
1/(2^k+1)+……+1/(2^(k+1))>=1/2
(3)
证明(3):
1/(2^k+1)+……+1/(2^(k+1))共有2^k项相加,其中最小者为1/(2^(k+1))
故1/(2^k+1)+……+1/(2^(k+1))>=2^k/(2^(k+1))=1/2,(3)得证。
再证右半个不等式:
(1)的右半个同时加1:
1+1/2+1/3+...+1/(2^k)+1<=1/2+k+1
与待证的(2)右半个相比,要证:
1/(2^k+1)+……+1/(2^(k+1))<=1
(4)
证明(4):
1/(2^k+1)+……+1/(2^(k+1))共有2^k项相加,其中最大者为1/(2^k+1)
故1/(2^k+1)+……+1/(2^(k+1))<=2^k/(2^k+1)=1-1/(2^k+1)<=1,(4)得证。
“两式相减”的时候,那是不等式啊怎么能小的减小的,大的减大的呢??
我有一种做法,需要写一会儿……
n=1显然
n=k时1+k/2<=1+1/2+1/3+...+1/(2^k)<=1/2+k
(1)
n=k+1时
要证
1+(k+1)/2<=1+1/2+1/3+...+1/(2^k)+……+1/(2^(k+1))<=1/2+k+1
(2)
先证左半个不等式:
(1)的左半个同时加1/2:
1+(k+1)/2<=1+1/2+1/3+...+1/(2^k)+1/2
与待证的(2)左半个相比,要证:
1/(2^k+1)+……+1/(2^(k+1))>=1/2
(3)
证明(3):
1/(2^k+1)+……+1/(2^(k+1))共有2^k项相加,其中最小者为1/(2^(k+1))
故1/(2^k+1)+……+1/(2^(k+1))>=2^k/(2^(k+1))=1/2,(3)得证。
再证右半个不等式:
(1)的右半个同时加1:
1+1/2+1/3+...+1/(2^k)+1<=1/2+k+1
与待证的(2)右半个相比,要证:
1/(2^k+1)+……+1/(2^(k+1))<=1
(4)
证明(4):
1/(2^k+1)+……+1/(2^(k+1))共有2^k项相加,其中最大者为1/(2^k+1)
故1/(2^k+1)+……+1/(2^(k+1))<=2^k/(2^k+1)=1-1/(2^k+1)<=1,(4)得证。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询