这道定积分的题怎么做? 10
1个回答
展开全部
换元法求:令 (1 + x) / √(3x^2 - 2x - 1) = t
两边平方得到:(x^2 + 2x + 1) / (3x^2 - 2x - 1) = t^2
=> t^2 + 1 = 4 * x^2 / (3x^2 - 2x - 1)
两边同时微分并且化简得到:-4x / (3x^2 - 2x - 1)^(3/2) dx = dt
=>dx = - (3x^2 - 2x - 1)^(3/2) / (4x) dt
x=1, t=+∞, x=2, t=3/√7
则代入原积分 = - ∫ 1 /(x*(3x^2-2x-1)^1/2)* (3x^2 - 2x - 1)^(3/2) / (4x) dt
= - ∫ (3x^2 - 2x - 1) / (4 * x^2) dt
= - ∫ 1 / (1 + t^2) dt
= - arctan t |(+∞,3/√7)
=π/2-arctan(3/√7)
两边平方得到:(x^2 + 2x + 1) / (3x^2 - 2x - 1) = t^2
=> t^2 + 1 = 4 * x^2 / (3x^2 - 2x - 1)
两边同时微分并且化简得到:-4x / (3x^2 - 2x - 1)^(3/2) dx = dt
=>dx = - (3x^2 - 2x - 1)^(3/2) / (4x) dt
x=1, t=+∞, x=2, t=3/√7
则代入原积分 = - ∫ 1 /(x*(3x^2-2x-1)^1/2)* (3x^2 - 2x - 1)^(3/2) / (4x) dt
= - ∫ (3x^2 - 2x - 1) / (4 * x^2) dt
= - ∫ 1 / (1 + t^2) dt
= - arctan t |(+∞,3/√7)
=π/2-arctan(3/√7)
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询