数学思维十种思维方式是什么?
1、对照法
根据数学题意,对照概念、性质、定律、法则、公式、名词、术语的含义和实质,依靠对数学知识的理解、记忆、辨识、再现、迁移来解题的方法叫做对照法。
2、公式法
运用定律、公式、规则、法则来解决问题的方法。它体现的是由一般到特殊的演绎思维。
3、比较法
通过对比数学条件及问题的异同点,研究产生异同点的原因,从而发现解决问题的方法,叫比较法。
4、分类法
根据事物的共同点和差异点将事物区分为不同种类的方法,叫做分类法。分类是以比较为基础的。依据事物之间的共同点将它们合为较大的类,又依据差异点将较大的类再分为较小的类。
5、分析法
把整体分解为部分,把复杂的事物分解为各个部分或要素,并对这些部分或要素进行研究、推导的种思维方法叫做分析法。
6、综合法
把对象的各个部分或各个方面或各个要素联结起来,并组合成一个有机的整体来研究、推导和一种思维方法叫做综合法。
7、方程法
用字母表示未知数,并根据等量关系列出含有字母的表达式(等式)。列方程是一个抽象概括的过程,解方程是一个演绎推导的过程。
方程法最大的特点是把未知数等同于已知数看待,参与列式、运算,克服了算术法必须避开求知数来列式的不足。有利于由已知向未知的转化,从而提高了解题的效率和正确率。
8、参数法
用只参与列式、运算而不需要解出的字母或数表示有关数量,并根据题意列出算式的-种方法叫做参数法。参数又叫辅助未知数,也称中间变量。参数法是方程法延伸、拓展的产物。
9、排除法
排除对立的结果叫做排除法。
排除法的逻辑原理是:任何事物都有其对立面,在有正确与错误的多种结果中,一切错误的结果都排除了,剩余的只能是正确的结果。这种方法也叫淘汰法、筛选法或反证法。
这是一种不可缺少的形式思维方法。
10、特例法
对于涉及一般性结论的题目,通过取特殊值或画特殊图或定特殊位置等特例来解题的方法叫做特例法。
特例法的逻辑原理是:事物的一.般性存在于特殊性之中。