二项式展开式中各项系数的和是什么?
3个回答
展开全部
令二项式中所有的字母都等于1,则计算出的结果就等于二项式展开式的各项系数的和。
如:(5x-1/根号x)的n次方的展开式各系数之和为M,其中M的算法为:令x=1,得4^n;二项式系数之和为N,其中N的算法为:2^n,从而有4^n-2^n=56。
解这个方程:56=7*8,而4^n-2^n=(2^n)*(2^n-1),是一个奇数乘以一个偶数,所以2^n=8,有n=3。
扩展资料:
二项式定理与杨辉三角形是一对天然的数形趣遇,它把数形结合带进了计算数学. 求二项式展开式系数的问题,实际上是一种组合数的计算问题. 用系数通项公式来计算,称为“式算”;用杨辉三角形来计算,称作“图算”.
杨辉三角形在3年内考了5个(相关的)题目,这正是高考改革强调“多想少算”、“逻辑思维与直觉思维并重”的结果. 这5个考题都与二项式展开式的系数相关,说明数形结合思想正在高考命题中进行深层次地渗透.
Sievers分析仪
2025-01-06 广告
2025-01-06 广告
是的。传统上,对于符合要求的内毒素检测,最终用户必须从标准内毒素库存瓶中构建至少一式两份三点标准曲线;必须有重复的阴性控制;每个样品和PPC必须一式两份。有了Sievers Eclipse内毒素检测仪,这些步骤可以通过使用预嵌入的内毒素标准...
点击进入详情页
本回答由Sievers分析仪提供
展开全部
在二项式展开式中,各项系数的和等于二项式展开式的幂次。这可以通过二项式定理来证明。
二项式定理表述如下:
对于任意实数 a 和 b,以及非负整数 n,有如下展开式:
(a + b)^n = C(n, 0) * a^n * b^0 + C(n, 1) * a^(n-1) * b^1 + C(n, 2) * a^(n-2) * b^2 + ... + C(n, n-1) * a^1 * b^(n-1) + C(n, n) * a^0 * b^n
其中,C(n, k) 表示组合数,表示从 n 个元素中选择 k 个元素的组合数,计算公式为 C(n, k) = n! / (k! * (n - k)!)。
现在我们来计算各项系数的和,即展开式中所有系数的总和:
(a + b)^n = C(n, 0) * a^n * b^0 + C(n, 1) * a^(n-1) * b^1 + C(n, 2) * a^(n-2) * b^2 + ... + C(n, n-1) * a^1 * b^(n-1) + C(n, n) * a^0 * b^n
系数的和为:
C(n, 0) + C(n, 1) + C(n, 2) + ... + C(n, n-1) + C(n, n)
这个和恰好等于 2^n,即系数的和等于二项式展开式的幂次。
因此,二项式展开式中各项系数的和是 2^n。
二项式定理表述如下:
对于任意实数 a 和 b,以及非负整数 n,有如下展开式:
(a + b)^n = C(n, 0) * a^n * b^0 + C(n, 1) * a^(n-1) * b^1 + C(n, 2) * a^(n-2) * b^2 + ... + C(n, n-1) * a^1 * b^(n-1) + C(n, n) * a^0 * b^n
其中,C(n, k) 表示组合数,表示从 n 个元素中选择 k 个元素的组合数,计算公式为 C(n, k) = n! / (k! * (n - k)!)。
现在我们来计算各项系数的和,即展开式中所有系数的总和:
(a + b)^n = C(n, 0) * a^n * b^0 + C(n, 1) * a^(n-1) * b^1 + C(n, 2) * a^(n-2) * b^2 + ... + C(n, n-1) * a^1 * b^(n-1) + C(n, n) * a^0 * b^n
系数的和为:
C(n, 0) + C(n, 1) + C(n, 2) + ... + C(n, n-1) + C(n, n)
这个和恰好等于 2^n,即系数的和等于二项式展开式的幂次。
因此,二项式展开式中各项系数的和是 2^n。
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
在二项式展开式中,各项系数的和是2的n次幂,其中n表示二项式的阶数(指数)。
二项式展开式的一般表达式为:
(a + b)^n = C(n,0)*a^n*b^0 + C(n,1)*a^(n-1)*b^1 + C(n,2)*a^(n-2)*b^2 + ... + C(n,r)*a^(n-r)*b^r + ... + C(n,n)*a^0*b^n
其中,C(n,r)表示组合数,表示从n个元素中选取r个元素的组合个数,其计算公式为:
C(n,r) = n!/[(n-r)! * r!]
各项系数C(n,r)可以看作是二项系数的选择方式,它表征了在二项式展开中,每一项中不同次幂的系数。
当将所有的项系数相加时,可以得出如下结论:
C(n,0) + C(n,1) + C(n,2) + ... + C(n,r) + ... + C(n,n) = 2^n
这意味着,二项式展开式中各项系数的和等于2的n次幂。这个结论可以通过组合数学推导或递推的方法得到。
二项式展开式的一般表达式为:
(a + b)^n = C(n,0)*a^n*b^0 + C(n,1)*a^(n-1)*b^1 + C(n,2)*a^(n-2)*b^2 + ... + C(n,r)*a^(n-r)*b^r + ... + C(n,n)*a^0*b^n
其中,C(n,r)表示组合数,表示从n个元素中选取r个元素的组合个数,其计算公式为:
C(n,r) = n!/[(n-r)! * r!]
各项系数C(n,r)可以看作是二项系数的选择方式,它表征了在二项式展开中,每一项中不同次幂的系数。
当将所有的项系数相加时,可以得出如下结论:
C(n,0) + C(n,1) + C(n,2) + ... + C(n,r) + ... + C(n,n) = 2^n
这意味着,二项式展开式中各项系数的和等于2的n次幂。这个结论可以通过组合数学推导或递推的方法得到。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询