矩阵的特征多项式是什么?
1个回答
展开全部
矩阵的特征多项式是:对于求解线性递推数列,我们还经常使用生成函数法,而对于常系数线性递推数列,其生成函数是一个有理分式,其分母即特征多项式。为n*n的矩阵A的特征多项式为|A-λE|,其中E为n*n的单位矩阵。
1、把|λE-A|的'各行(或各列)加起来,若相等,则把相等的部分提出来(一次因式)后,剩下的部分是二次多项式,肯定可以分解因式。
2、把|λE-A|的某一行(或某一列)中不含λ的两个元素之一化为零,往往会出现公因子,提出来,剩下的又是一二次多项式。
3、试根法分解因式。
对布于任何交换环上的方阵都能定义特征多项式。要理解特征多项式,首先需要了解一下特征值与特征向量,这些都是联系在一起的:
设A是n阶矩阵,如果数λ和n维非零列向量x使得关系式Ax=λx成立,那么,这样的数λ就称为方阵A的特征值,非零向量x称为A对应于特征值λ的特征向量。
富港检测技术(东莞)有限公司_
2024-04-02 广告
2024-04-02 广告
特征矩阵如上,求其行列式,即特征多项式。按第1列展开,得到2阶行列式,然后按对角线法则展开,得到:(λ-1)[(λ+1)λ-1]=(λ-1)(λ^2+λ-1)=(λ-1)[(λ^2+λ+1)-2]=(λ^3-1)-2(λ-1)=λ^3-2λ...
点击进入详情页
本回答由富港检测技术(东莞)有限公司_提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
广告 您可能关注的内容 |