在任意三角形ABC内取一点P,使PA+PB+PC和最小,问点P的位置并求证

 我来答
京斯年0GZ
2022-07-08 · TA获得超过6207个赞
知道小有建树答主
回答量:306
采纳率:100%
帮助的人:74.3万
展开全部
费马(Pierre De Fermat )是法国数学家,1601年8月17日出生于法国南部图卢兹附近的博蒙·德·洛马涅.费马曾提出关于三角形的一个有趣问题:在三角形所在平面上,求一点,使该点到三角形三个顶点距离之和最小.人们称这个点为“费马点”.
引例:有甲乙丙三个村庄,要在中间建一供水站向三地送水,现要确定供水站的位置以使所需管道总长最小?将此问题用数学模型抽象出来即为:
在△ ABC中确定一点P,使P到三顶点的距离之和PA+PB+PC最小.
解法如下:分别以AB AC为边向外侧作正三角形ABD ACE 连结CD BE交于一点,则该点 即为所求P点.
证明:如下图所示.连结PA、PB、PC,在△ABE和△ACD中,AB=AD AE=AC ∠BAE=∠BAC+60° ∠DAC=∠BAC+60°=∠BAE ∴△ABE全等△ACD.
∴ ∠ABE=∠ADC 从而A、D、B、P四点共圆
∴∠APB=120° ,∠APD=∠ABD=60°
同理:∠APC=∠BPC=120°
以P为圆心,PA为半径作圆交PD于F点,连结AF,
以A为轴心将△ABP顺时针旋转60°,已证∠APD=60°
∴△APF为正三角形.∴不难发现△ABP与△ADF重合.
∴BP=DF PA+PB+PC=PF+DF+PC=CD
另在△ABC中任取一异于P的点G ,同样连结GA、GB、GC、GD,以B为轴心
将△ABG逆时针旋转60°,记G点旋转到M点..
则△ABG与△BDM重合,且M或 在 线 段DG上 或 在DG外.
GB+GA=GM+MD≥GDGA+GB+GC≥GD+GC>DC.
从而CD为最短的线段.
以上是简单的费马点问题,将此问题外推到四点,可验证四边形的对角线连线的交点即是所求点
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式