因式分解:x^4-2x^4y+x^4y^2-2x^2+y^2-2x^2y^2+2y+1
展开全部
x^4-2x^4y+x^4y^2-2x^2+y^2-2x^2y^2+2y+1
=x^4y^2-2x^2y^2+y^2-2x^4y+2y+x^4-2x^2+1
=y^2(x^4-2x^2+1)-2y(x^4-1)+x^4-2x^2+1
=y^2(x^2-1)^2-2y(x^2+1)(x^2-1)+(x^2-1)^2
=(x^2-1)(x^2y^2-y^2-2x^2y-2y+x^2-1)
=(x^2-1)[x^2(y^2-2y+1)-(y^2+2y+1)]
=(x-1)(x+1)[(xy-x)^2-(y+1)^2]
=(x-1)(x+1)(xy-x-y-1)(xy-x+y+1)
=x^4y^2-2x^2y^2+y^2-2x^4y+2y+x^4-2x^2+1
=y^2(x^4-2x^2+1)-2y(x^4-1)+x^4-2x^2+1
=y^2(x^2-1)^2-2y(x^2+1)(x^2-1)+(x^2-1)^2
=(x^2-1)(x^2y^2-y^2-2x^2y-2y+x^2-1)
=(x^2-1)[x^2(y^2-2y+1)-(y^2+2y+1)]
=(x-1)(x+1)[(xy-x)^2-(y+1)^2]
=(x-1)(x+1)(xy-x-y-1)(xy-x+y+1)
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询