求过程!写纸上拍照谢谢!

 我来答
退潮迷倒6
2015-08-08 · TA获得超过220个赞
知道小有建树答主
回答量:201
采纳率:100%
帮助的人:53.1万
展开全部
设数列{an}的前n项和为Sn.已知a1=1,2Snn=an+1−13n2−n−23,n∈N∗.
(1)求a2的值;
(2)求数列{an}的通项公式;
(3)证明:对一切正整数n,有1a1+1a2+…+1an<74.
数列的求和;数列递推式.
(1)利用
2Sn
n
=an+1-
1
3
n2-n-
2
3
,代入计算,即可求a2的值;
(2)再写一式,两式相减,即可求数列{an}的通项公式;
(3)分类讨论,证明当n≥3时,n2>(n-1)•(n+1),可得
1
n2

1
(n−1)•(n+1)
,利用裂项法求和,可得结论.
(1)∵2Snn=an+1−13n2−n−23,n∈N。
∴当n=1时,2a1=2S1=a2−13−1−23=a2−2.
又a1=1,∴a2=4.
(2)∵2Snn=an+1−13n2−n−23,n∈N。
∴2Sn=nan+1−13n3−n2−23n=nan+1−n(n+1)(n+2)3,①
∴当n⩾2时,2Sn−1=(n−1)an−(n−1)n(n+1)3,②
由①−②,得2Sn−2Sn−1=nan+1−(n−1)an−n(n+1),
∵2an=2Sn−2Sn−1,∴2an=nan+1−(n−1)an−n(n+1),
∴an+1n+1−ann=1,∴数列{an}是以首项为1,公差为1的等差数列。
∴ann=1+1×(n−1)=n,∴an=n2(n⩾2),
当n=1时,上式显然成立.∴an=n2,n∈N∗.
(3)证明:由(2)知,an=n2,n∈N∗,
①当n=1时,1a1=1<74,∴原不等式成立。
②当n=2时,1a1+1a2=1+14<74,∴原不等式成立。
③当n⩾3时,∵n2>(n−1)⋅(n+1),
∴1n2<1(n−1)⋅(n+1),
∴1a1+1a2+…+1an<1+11×3+12×4+…+1(n−2)⋅n+1(n−1)⋅(n+1)=1+12(11−13+12−14+13−15+…+1n−2−1n+1n−1−1n+1)=1+12(32−1n−1n+1)<74,
∴当n⩾3时,∴原不等式亦成立。
综上,对一切正整数n,有1a1+1a2+…+1an<74.
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式