设A为n阶方阵,证明:(1)若A^2=A,则r(A)+r(A-E)=n (2)若A^2=E,则r(A+E)+r(A-E)=n

 我来答
慧圆教育
2022-05-31 · TA获得超过5007个赞
知道大有可为答主
回答量:4908
采纳率:100%
帮助的人:244万
展开全部
这里边用到两个结论:r(A+B)=r(A+E-A)=r(E)=n.
中间等号必须成立,因此r(A)+r(A-E)=n.
2、(A+E)(A-E)=0,因此n>=r(A+E)+r(A-E)=r(A+E)+r(E-A)>=r(A+E+E-A)=r(2E)=n,
中间等号必须成立,故r(A+E)+r(A-E)=n.
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式