tan=2求cosa的平方加2sin2a
记背诀窍:奇变偶不变,符号看象限 [2] .即形如(2k+1)90°±α,则函数名称变为余名函数,正弦变余弦,余弦变正弦,正切变余切,余切变正切。形如2k×90°±α,则函数名称不变。
诱导公式口诀“奇变偶不变,符号看象限”意义:
k×π/2±a(k∈z)的三角函数值
(1)当k为偶数时,等于α的同名三角函数值,前面加上一个把α看作锐角时原三角函数值的符号;
(2)当k为奇数时,等于α的异名三角函数值,前面加上一个把α看作锐角时原三角函数值的符号。
记忆方法一:奇变偶不变,符号看象限:
奇变偶不变:其中的奇偶是指π/2的奇偶数倍,变与不变是指三角函数名称的变化,若变,则是正弦变余弦,正切变余切。
符号看象限:根据角的范围以及三角函数在哪个象限的正负,来判断新三角函数的符号。
记忆方法二:无论α是多大的角,都将α看成锐角.
以诱导公式二为例:
若将α看成锐角(终边在第一象限),则π+α是第三象限的角(终边在第三象限),正弦函数的函数值在第三象限是负值,余弦函数的函数值在第三象限是负值,正切函数的函数值在第三象限是正值。这样,就得到了诱导公式二。
以诱导公式四为例:
若将α看成锐角(终边在第一象限),则π-α是第二象限的角(终边在第二象限),正弦函数的三角函数值在第二象限是正值,余弦函数的三角函数值在第二象限是负值,正切函数的三角函数值在第二象限是负值。这样,就得到了诱导公式四。
诱导公式的应用:
运用诱导公式转化三角函数的一般步骤:
特别提醒:三角函数化简与求值时需要的知识储备:①熟记特殊角的三角函数值;②注意诱导公式的灵活运用;③三角函数化简的要求是项数要最少,次数要最低,函数名最少,分母能最简,易求值最好。
所以(seca)^2=(tana)^2+1=5,
sin2a=2tana/{1+(tana)^2]=4/5,
于是(cosa)^2+2sin2a
=1/5+8/5
=9/5.
∵ cosa十2sin2a
=cosa十2(2sinacosa)
=cosa十4sinacosa
=1/sin十4sina•1/sina
=(1十4sina)/sina
=1/sina十4
=1/sina十2×2
=1/sina十2tana
=1/sina十2sina/cosa
=(cosa十2sin^2 a)/sinacosa