实数和虚数有什么区别?

 我来答
爱探析社会的小童
高能答主

2022-08-29 · 用不同的眼光看待社会中的点点滴滴
爱探析社会的小童
采纳数:410 获赞数:9516

向TA提问 私信TA
展开全部

一、性质不同

1、实数:实数是有理数和无理数的总称。

2、虚数:虚数就是指数幂是负数的数。

二、包括内容不同

1、实数:实数可以分为有理数和无理数两类,或代数数和超越数两类,实数集通常用黑正体字母 R 表示,实数是不可数的。

2、虚数:i,2i ,-2i ,3.14i等,总之非零实属a,ai就是虚数。

特点:

1、实数和虚数共同构成复数,实数集R对加、减、乘、除(除数不为零)四则运算具有封闭性。

2、因为实数、虚数都是复数,虚数也可以理解为虚部“b”不是0(带着“i”,并且“i”的系数不是0)的复数。

3、不是实数的复数,即使是纯虚数,也不能比较大小。

清见事宜
高粉答主

2022-09-09 · 一曲高歌一樽酒,一人独钓一江秋。
清见事宜
采纳数:4014 获赞数:25997

向TA提问 私信TA
展开全部

一、定义不同

1、实数

实数可以用来测量连续的量。理论上,任何实数都可以用无限小数的方式表示,小数点的右边是一个无穷的数列(可以是循环的,也可以是非循环的)。

在实际运用中,实数经常被近似成一个有限小数(保留小数点后n位,n为正整数)。在计算机领域,由于计算机只能存储有限的小数位数,实数经常用浮点数来表示。

2、虚数

在数学里,将偶指数幂是负数的数定义为纯虚数。所有的虚数都是复数。定义为i=-1。但是虚数是没有算术根这一说的,所以±√(-1)=±i。对于z=a+bi,也可以表示为e的iA次方的形式,其中e是常数,i为虚数单位,A为虚数的幅角,即可表示为z=cosA+isinA。

实数和虚数组成的一对数在复数范围内看成一个数,起名为复数。虚数没有正负可言。不是实数的复数,即使是纯虚数,也不能比较大小。


二、起源不同

1、实数

在公元前500年左右,以毕达哥拉斯为首的希腊数学家们认识到有理数在几何上不能满足需要,但毕达哥拉斯本身并不承认无理数的存在。直到17世纪,实数才在欧洲被广泛接受。18世纪,微积分学在实数的基础上发展起来。1871年,德国数学家康托尔第一次提出了实数的严格定义。

2、虚数

虚数”这个名词是17世纪著名数学家、哲学家笛卡尔创制,因为当时的观念认为这是真实不存在的数字。后来发现虚数可对应平面上的纵轴,与对应平面上横轴的实数同样真实。

人们发现即使使用全部的有理数和无理数,也不能解决代数方程的求解问题。像x²+1=0这样最简单的二次方程,在实数范围内没有解。

12世纪的印度大数学家婆什伽罗都认为这个方程是没有解的。他认为正数的平方是正数,负数的平方也是正数,因此,一个正数的平方根是两重的;一个正数和一个负数,负数没有平方根,因此负数不是平方数。这等于不承认方程的负数平方根的存在。

本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
做而论道
高能答主

2023-03-13 · 把复杂的事情简单说给你听
知道大有可为答主
回答量:3万
采纳率:80%
帮助的人:1.2亿
展开全部

实数,就是:整数、小数,以及“带小数”的统称。

实数包括了:

  整数(正整数、负整数、零);

  小数(正的、负的、有限的、无限的、循环的、不循环的)。

  带小数(含有整数部分和小数部分)

这些,都是小学学过的知识吧?

实数,简单来说,就是:“数轴上所有的点”上的数字。

--------------------------

虚数,是“实数与虚单位 i 的乘积”。

  其中 i * i =-1。

  由于 i 的存在,虚数就是“i 轴上所有的点”的数字。

--------------------------

复数,包括实部和虚部两个部分。

  一般是以实轴为水平、i 轴为垂直,构成一个“复平面”。

  复数就是:“复平面上所有点”上的数字。

已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(1)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式